[en] Thioredoxins (Trxs) are antioxidant proteins that are conserved among all species. These proteins have been extensively studied and perform reducing reactions on a broad range of substrates. Here, we identified Caulobacter crescentus Trx1 (CCNA_03653; CcTrx1) as an oxidoreductase that is involved in the cell cycle progression of this model bacterium and is required to sustain life. Intriguingly, the abundance of CcTrx1 varies throughout the C. crescentus cell cycle: although the expression of CcTrx1 is induced in stalked cells, right before DNA replication initiation, CcTrx1 is actively degraded by the ClpXP protease in predivisional cells. Importantly, we demonstrated that regulation of the abundance of CcTrx1 is crucial for cell growth and survival as modulating CcTrx1 levels leads to cell death. Finally, we also report a comprehensive biochemical and structural characterization of this unique and essential Trx. The requirement to precisely control the abundance of CcTrx1 for cell survival underlines the importance of redox control for optimal cell cycle progression in C. crescentus.
Goemans, Camille V; From WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium, camille.goemans@uclouvain.be ; the de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium ; the Brussels Center for Redox Biology, 1200 Brussels, Belgium
Beaufay, François ; Université de Liège - ULiège > Département des sciences de la vie > Centre d'Ingénierie des Protéines (CIP) ; the de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium
Wahni, Khadija; the Brussels Center for Redox Biology, 1200 Brussels, Belgium ; the Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), 1050 Brussels, Belgium, and ; Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
Van Molle, Inge; the Brussels Center for Redox Biology, 1200 Brussels, Belgium ; the Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), 1050 Brussels, Belgium, and ; Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
Messens, Joris; the Brussels Center for Redox Biology, 1200 Brussels, Belgium ; the Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), 1050 Brussels, Belgium, and ; Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
Collet, Jean-François; From WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium, jfcollet@uclouvain.be ; the de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium ; the Brussels Center for Redox Biology, 1200 Brussels, Belgium
Language :
English
Title :
An essential thioredoxin is involved in the control of the cell cycle in the bacterium Caulobacter crescentus.
Publication date :
09 March 2018
Journal title :
Journal of Biological Chemistry
ISSN :
0021-9258
eISSN :
1083-351X
Publisher :
American Society for Biochemistry and Molecular Biology Inc., Bethesda, United States
ERC - European Research Council FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture Hercules Foundation VUB - Vrije Universiteit Brussel F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding text :
3 Supported by an Omics@VIB Marie Curie COFUND fellowship.This work was supported in part by grants from Fonds de la Recherche Fonda-mentale Strat\u00E9gique (FRFS)-WELBIO, European Research Council (FP7/2007\u2013 2013) ERC Independent Researcher Starting Grant 282335-Sulfenic, and grants from the Fonds de la Recherche Scientifique (FRS-FNRS). The authors declare that they have no conflicts of interest with the contents of this article.This work was supported in part by grants from Fonds de la Recherche Fonda-mentale Strat\u00E9gique (FRFS)-WELBIO, European Research Council (FP7/2007\u20132013) ERC Independent Researcher Starting Grant 282335-Sulfenic, and grants from the Fonds de la Recherche Scientifique (FRS-FNRS). The authors declare that they have no conflicts of interest with the contents of this article. 4 Group leader at VIB. Supported by Hercules Foundation Equipment Grant HERC16 and Strategic Research Programme SRP34 of the Vrije Universiteit Brussel.4Group leader at VIB. Supported by Hercules Foundation Equipment Grant HERC16 and Strategic Research Programme SRP34 of the Vrije Universiteit Brussel. 5\u201CDirecteur de Recherche\u201D of the FRS-FNRS. To whom correspondence may be addressed: de Duve Institute, Universit\u00E9 catholique de Louvain, 75 Ave. Hippocrate, 1200 Brussels, Belgium. Tel.: 32-2-7647562; Fax: 32-2-7647598; E-mail: jfcollet@uclouvain.be.
Collet, J. F., and Messens, J. (2010) Structure, function, and mechanism of thioredoxin proteins. Antioxid. Redox Signal. 13, 1205–1216 CrossRef Medline
Laurent, T. C., Moore, E. C., and Reichard, P. (1964) Enzymatic synthesis of deoxyribonucleotides. IV. Isolation and characterization of thioredoxin, the hydrogen donor from Escherichia coli B. J. Biol. Chem. 239, 3436 –3444 Medline
Moore, E. C., Reichard, P., and Thelander, L. (1964) Enzymatic synthesis of deoxyribonucleotides. V. Purification and properties of thioredoxin reductase from Escherichia coli B. J. Biol. Chem. 239, 3445–3452 Medline
Arts, I. S., Vertommen, D., Baldin, F., Laloux, G., and Collet, J. F. (2016) Comprehensively characterizing the thioredoxin interactome in vivo highlights the central role played by this ubiquitous oxidoreductase in redox control. Mol. Cell. Proteomics 15, 2125–2140 CrossRef Medline
Christen, B., Abeliuk, E., Collier, J. M., Kalogeraki, V. S., Passarelli, B., Coller, J. A., Fero, M. J., McAdams, H. H., and Shapiro, L. (2011) The essential genome of a bacterium. Mol. Syst. Biol. 7, 528CrossRef Medline
Hottes, A. K., Shapiro, L., and McAdams, H. H. (2005) DnaA coordinates replication initiation and cell cycle transcription in Caulobacter crescentus. Mol. Microbiol. 58, 1340 –1353 CrossRef Medline
Curtis, P. D., and Brun, Y. V. (2010) Getting in the loop: regulation of development in Caulobacter crescentus. Microbio.l Mol. Biol. Rev. 74, 13– 41 CrossRef Medline
Narayanan, S., Janakiraman, B., Kumar, L., and Radhakrishnan, S. K. (2015) A cell cycle-controlled redox switch regulates the topoisomerase IV activity. Genes Dev. 29, 1175–1187 CrossRef Medline
Holmgren, A. (1979) Thioredoxin catalyzes the reduction of insulin dis-ulfides by dithiothreitol and dihydrolipoamide. J. Biol. Chem. 254, 9627–9632 Medline
Krause, G., and Holmgren, A. (1991) Substitution of the conserved tryp-tophan 31 in Escherichia coli thioredoxin by site-directed mutagenesis and structure-function analysis. J. Biol. Chem. 266, 4056 – 4066 Medline
Chivers, P. T., Prehoda, K. E., and Raines, R. T. (1997) The CXXC motif: a rheostat in the active site. Biochemistry 36, 4061– 4066 CrossRef Medline
Jordan, A., Aslund, F., Pontis, E., Reichard, P., and Holmgren, A. (1997) Characterization of Escherichia coli NrdH. A glutaredoxin-like protein with a thioredoxin-like activity profile. J. Biol. Chem. 272, 18044 –18050 CrossRef Medline
Lu, J., and Holmgren, A. (2014) The thioredoxin antioxidant system. Free Radic. Biol. Med. 66, 75– 87 CrossRef Medline
Ely, B. (1991) Genetics of Caulobacter crescentus. Methods Enzymol. 204, 372–384 CrossRef Medline
Flynn, J. M., Neher, S. B., Kim, Y. I., Sauer, R. T., and Baker, T. A. (2003) Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol. Cell 11, 671– 683 CrossRef Medline
Alexopoulos, J. A., Guarné, A., and Ortega, J. (2012) ClpP: a structurally dynamic protease regulated by AAA proteins. J. Struct. Biol. 179, 202–210 CrossRef Medline
Jenal, U. (2009) The role of proteolysis in the Caulobacter crescentus cell cycle and development. Res. Microbiol. 160, 687– 695 CrossRef Medline
Bhat, N. H., Vass, R. H., Stoddard, P. R., Shin, D. K., and Chien, P. (2013) Identification of ClpP substrates in Caulobacter crescentus reveals a role for regulated proteolysis in bacterial development. Mol. Microbiol. 88, 1083–1092 CrossRef Medline
Radhakrishnan, S. K., Pritchard, S., and Viollier, P. H. (2010) Coupling prokaryotic cell fate and division control with a bifunctional and oscillating oxidoreductase homolog. Dev. Cell 18, 90 –101 CrossRef Medline
Beaufay, F., Coppine, J., Mayard, A., Laloux, G., De Bolle, X., and Hallez, R. (2015) A NAD-dependent glutamate dehydrogenase coordinates metabolism with cell division in Caulobacter crescentus. EMBO J. 34, 1786 –1800 CrossRef Medline
Tsai, J. W., and Alley, M. R. (2001) Proteolysis of the Caulobacter McpA chemoreceptor is cell cycle regulated by a ClpX-dependent pathway. J. Bacteriol. 183, 5001–5007 CrossRef Medline
Domian, I. J., Quon, K. C., and Shapiro, L. (1997) Cell type-specific phos-phorylation and proteolysis of a transcriptional regulator controls the G1-to-S transition in a bacterial cell cycle. Cell 90, 415– 424 CrossRef Medline
Jenal, U., and Fuchs, T. (1998) An essential protease involved in bacterial cell-cycle control. EMBO J. 17, 5658 –5669 CrossRef Medline
McGrath, P. T., Iniesta, A. A., Ryan, K. R., Shapiro, L., and McAdams, H. H. (2006) A dynamically localized protease complex and a polar specificity factor control a cell cycle master regulator. Cell 124, 535–547 CrossRef Medline
Iniesta, A. A., McGrath, P. T., Reisenauer, A., McAdams, H. H., and Shapiro, L. (2006) A phospho-signaling pathway controls the localization and activity of a protease complex critical for bacterial cell cycle progression. Proc. Natl. Acad. Sci. U.S.A. 103, 10935–10940 CrossRef Medline
Joshi, K. K., and Chien, P. (2016) Regulated proteolysis in bacteria: Caulobacter. Annu. Rev. Genet. 50, 423– 445 CrossRef Medline
Markovski, M., and Wickner, S. (2013) Preventing bacterial suicide: a novel toxin-antitoxin strategy. Mol. Cell 52, 611– 612 CrossRef Medline
Hottes, A. K., Meewan, M., Yang, D., Arana, N., Romero, P., McAdams, H. H., and Stephens, C. (2004) Transcriptional profiling of Caulobacter crescentus during growth on complex and minimal media. J. Bacteriol. 186, 1448 –1461 CrossRef Medline
Sengupta, R., and Holmgren, A. (2014) Thioredoxin and glutaredoxin-mediated redox regulation of ribonucleotide reductase. World J. Biol. Chem. 5, 68 –74 CrossRef Medline
Berndt, C., Schwenn, J.-D., and Lillig, C. H. (2015) The specificity of thioredoxins and glutaredoxins is determined by electrostatic and geometric complementarity. Chem. Sci.6, 7049 –7058 CrossRef
Stehr, M., Schneider, G., Aslund, F., Holmgren, A., and Lindqvist, Y. (2001) Structural basis for the thioredoxin-like activity profile of the glutaredoxin-like NrdH-redoxin from Escherichia coli. J. Biol. Chem. 276, 35836 –35841 CrossRef Medline
Gon, S., Faulkner, M. J., and Beckwith, J. (2006) In vivo requirement for glutaredoxins and thioredoxins in the reduction of the ribonucleotide reductases of Escherichia coli. Antioxid. Redox Signal. 8, 735–742 CrossRef Medline
Kelly, A. J., Sackett, M. J., Din, N., Quardokus, E., and Brun, Y. V. (1998) Cell cycle-dependent transcriptional and proteolytic regulation of FtsZ in Caulobacter. Genes Dev. 12, 880 – 893 CrossRef Medline
Martin, M. E., Trimble, M. J., and Brun, Y. V. (2004) Cell cycle-dependent abundance, stability and localization of FtsA and FtsQ in Caulobacter crescentus. Mol. Microbiol. 54, 60 –74 CrossRef Medline
Lawarée, E., Gillet, S., Louis, G., Tilquin, F., Le Blastier, S., Cambier, P., and Matroule, J. Y. (2016) Caulobacter crescentus intrinsic dimorphism provides a prompt bimodal response to copper stress. Nat. Microbiol. 1, 16098 CrossRef Medline
Marks, M. E., Castro-Rojas, C. M., Teiling, C., Du, L., Kapatral, V., Walunas, T. L., and Crosson, S. (2010) The genetic basis of laboratory adaptation in Caulobacter crescentus. J Bacteriol 192, 3678 –3688 CrossRef Medline
Wunderlich, M., and Glockshuber, R. (1993) Redox properties of protein disulfide isomerase (DsbA) from Escherichia coli. Protein Sci 2, 717–726 CrossRef Medline
Kabsch, W. (2010) XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 12 CrossRef5–132 Medline
McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Sto-roni, L. C., and Read, R. J. (2007) Phaser crystallographic software. J. Appl. Crystallogr. 40, 658 – 674 CrossRef
Adams, P. D., Afonine, P. V., Bunkóczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L.-W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., et al. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 CrossRef Medline
Terwilliger, T. C., Grosse-Kunstleve, R. W., Afonine, P. V., Moriarty, N. W., Zwart, P. H., Hung, L.-W., Read, R. J., and Adams, P. D. (2008) Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr. D Biol. Crystallogr. 64, 61– 69 CrossRef Medline
Emsley, P., and Cowtan, K. (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126 –2132 CrossRef Medline
Afonine, P. V., Grosse-Kunstleve, R. W., Echols, N., Headd, J. J., Moriarty, N. W., Mustyakimov, M., Terwilliger, T. C., Urzhumtsev, A., Zwart, P. H., and Adams, P. D. (2012) Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D Biol. Crystallogr. 68, 352–367 CrossRef Medline
Denoncin, K., Nicolaes, V., Cho, S. H., Leverrier, P., and Collet, J. F. (2013) Protein disulfide bond formation in the periplasm: determination of the in vivo redox state of cysteine residues. Methods Mol. Biol. 966, 325–336 CrossRef Medline