Cultivation of marine chitinolytic bacteria reveals the sponge-associated Motilimonas isolate Spo1_1 as an efficient degrader of insoluble chitin. - 2025
[en] [en] AIMS: Culture-independent studies in the literature suggest that marine habitats hold diversified chitin-degrading microbial communities. This study was conducted to isolate novel chitinolytic bacteria from two bacteria-rich marine biotopes, namely sponges and sediments, and compare the efficiency with which those strains degrade different forms of chitin.
METHODS AND RESULTS: Bacterial colonies were isolated from chitinolytic consortia derived from the microbiota of the marine sponge Hymeniacidon perlevis of and its surrounding sediment collected at Audresselles beach, France. Many isolates (49%) produced a halo of chitin degradation on colloidal chitin agar plates, including isolates belonging to two genera (Motilimonas, Pseudophaeobacter) yet unknown as chitin degraders. However, 83% of the positive isolates degraded poorly insoluble chitin powder in liquid cultures. Nine isolates were further tested for colloidal chitin degradation in liquid cultures and exhibited contrasting results. One isolate, Motilimonas Spo1_1, exhibited the strongest chitinolytic activity in liquid culture containing insoluble chitin powder (i.e. 37% of degradation). The analysis of its genome and that of other Motilimonas spp. revealed an arsenal of genes for chitin degradation. Genomic analyses suggest that Spo1_1 is a new species within the genus Motilimonas, we propose the name Motilimonas chitinivorans.
CONCLUSIONS: Motilimonas Spo1_1 largely outperformed all 70 other strains in terms of its insoluble chitin degradation capabilities, including strains belonging to the well-known chitinolytic genera Vibrio and Pseudoalteromonas. Those results encourage further studies on the potential of Motilimonas spp. to eliminate chitinous waste. More generally, they confirm that marine habitats are a reservoir of chitinolytic microbes yet to be discovered.
Disciplines :
Microbiology
Author, co-author :
Dechamps, Etienne ; Laboratory of Ecology of Aquatic Systems, Brussels School of Bioengineering, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium
Salengros, Arthur; Laboratory of Ecology of Aquatic Systems, Brussels School of Bioengineering, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium
Meunier, Laurence; Laboratory of Ecology of Aquatic Systems, Brussels School of Bioengineering, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium
Chevalier, Séverine ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > MAST (Modeling for Aquatic Systems) ; Laboratory of Ecology of Aquatic Systems, Brussels School of Bioengineering, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium
Danguy, Johan; Laboratory of Ecology of Aquatic Systems, Brussels School of Bioengineering, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium
Heidig, Sophie-Luise; Evolutionary Biology and Ecology, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium ; Interuniversity Institute of Bioinformatics in Brussels - (IB)², 1050 Brussels, Belgium
Flot, Jean-François; Evolutionary Biology and Ecology, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium ; Interuniversity Institute of Bioinformatics in Brussels - (IB)², 1050 Brussels, Belgium
Keller-Costa, Tina; Institute for Bioengineering and Biosciences (iBB) and Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisbon, Portugal ; Department of Bioengineering, Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-011 Lisbon, Portugal
Costa, Rodrigo; Institute for Bioengineering and Biosciences (iBB) and Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisbon, Portugal ; Department of Bioengineering, Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-011 Lisbon, Portugal
George, Isabelle F; Laboratory of Ecology of Aquatic Systems, Brussels School of Bioengineering, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium
Language :
English
Title :
Cultivation of marine chitinolytic bacteria reveals the sponge-associated Motilimonas isolate Spo1_1 as an efficient degrader of insoluble chitin.
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
Funding text :
This work was supported by a PhD grant to E. Dechamps from the Fonds de la Recherche dans l'Industrie et l'Agriculture (FRIA) at the Fonds de la Recherche Scientifique (F.R.S-FNRS).
Alldredge AL, Gotschalk CC. the relative contribution of marine snow of different origins to biological processes in coastal waters. Cont Shelf Res. 1990; 10: 41 58. 10.1016/0278-4343(90)90034-J
Alsalman A. J, Farid A, Al Mohaini M. et al., Chitinase activity by chitin degrading strain (Bacillus salmalaya) in shrimp waste. IJCRR. 2022; 14: 11 17. 10.31782/IJCRR.2022.141107.
Beier S, Bertilsson S. Bacterial chitin degradation-mechanisms and ecophysiological strategies. Front Microbiol. 2013; 4: 149 10.3389/fmicb.2013.00149
Beygmoradi A, Homaei A, Hemmati R. et al. Marine chitinolytic enzymes, a biotechnological treasure hidden in the ocean?. Appl Microbiol Biotechnol. 2018; 102: 9937 48. 10.1007/s00253-018-9385-7.
Bonal M, Goetghebuer L, Joseph C. et al. Deciphering interactions within a 4-strain riverine bacterial community. Curr Microbiol. 2023; 80: 238 10.1007/s00284-023-03342-9
Boraston AB, Bolam DN, Gilbert HJ. et al. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J. 2004; 382: 769 81. 10.1042/BJ20040892
Busse HJ. Review of the taxonomy of the genus Arthrobacter, emendation of the genus arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. Nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen. nov., Paenarthrobacter gen. nov. and pseudarthrobacter gen. nov., and emended description of Arthrobacter roseus. Int J Syst Evol Microbiol. 2016; 66: 9 37.
Cantalapiedra CP, Hernandez-Plaza A, Letunic I. et al. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol. 2021; 38: 5825 9. 10.1093/molbev/msab293.
Crauwels C, Heidig S-L, Díaz A. et al. Large-scale structure-informed multiple sequence alignment of proteins with SIMSApiper. Bioinformatics. 2024; 40(5): btae276 10.1093/bioinformatics/btae276
da Silva DMG, Pedrosa FR, Ângela Taipa M. et al. Widespread occurrence of chitinase-encoding genes suggests the Endozoicomonadaceae family as a key player in chitin processing in the marine benthos. ISME Commun. 2023; 3. 10.1038/s43705-023-00316-7
Dhole NP, Dar MA, Pandit RS. Recent advances in the bioprospection and applications of chitinolytic bacteria for valorization of waste chitin. Arch Microbiol. 2021; 203: 1953 69. 10.1007/s00203-021-02234-5.
Elieh-Ali-Komi D, Hamblin MR, Daniel E-A-K. Chitin and Chitosan: production and application of versatile biomedical nanomaterials HHS public access. Int J Adv Res (Indore). 2016; 4: 411 27.
Esteves AIS, Amer N, Nguyen M. et al. Sample processing impacts the viability and cultivability of the sponge microbiome. Front Microbiol. 2016; 7: 499 10.3389/fmicb.2016.00499
Gohel V, Singh A, Vimal M. et al. Bioprospecting and antifungal potential of chitinolytic microorganisms. Afr J Biotechnol. 2006; 5: 54 72. http://www.academicjournals.org/AJB
Gooday GW. The ecology of chitin degradation. In: Advances in Microbial Ecology. 1990; 10: 387 430. https://link.springer.com/chapter/10.1007/978-1-4684-7612-5_10
Gortari MC, Hours RA. Biotechnological processes for chitin recovery out of crustacean waste: a mini-review. Electron J Biotechnol. 2013; 16: 1 14. 10.2225/vol16-issue3-fulltext-10
Hameş-Kocabaş EE, Uzel A. Isolation strategies of marine-derived actinomycetes from sponge and sediment samples. J Microbiol Methods. 2012; 88: 342 7. 10.1016/j.mimet.2012.01.010.
Hamre AG, Eide KB, Wold HH. et al. Activation of enzymatic chitin degradation by a lytic polysaccharide monooxygenase. Carbohydr Res. 2015; 407: 166 9. 10.1016/j.carres.2015.02.010.
Hoang KC, Lai TH, Lin CS. et al. The chitinolytic activities of Streptomyces sp. TH-11. Int J Mol Sci. 2011; 12: 56 65. 10.3390/ijms12010056.
Hou F, Gong Z, Jia F. et al. Insights into the relationships of modifying methods, structure, functional properties and applications of chitin: a review. Food Chem. 2023; 409: 135336 10.1016/j.foodchem.2022.135336
Hsu SC, Lockwood JL. Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Appl Microbiol. 1975; 29: 422 6. 10.1128/am.29.3.422-426.1975
Hunt DE, Gevers D, Vahora NM. et al. Conservation of the chitin utilization pathway in the Vibrionaceae. Appl Environ Microb. 2008; 74: 44 51. 10.1128/AEM.01412-07.
Jiang, WX., Li, PY., Chen, XL. et al. A pathway for chitin oxidation in marine bacteria. Nat Commun. 2022; 13: 5899. 10.1038/s41467-022-33566-5
Kalyaanamoorthy S, Minh BQ, Wong TKF. et al. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017; 14: 587 9. 10.1038/nmeth.4285.
Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016; 428: 726 31. 10.1016/j.jmb.2015.11.006.
Kawase T, Yokokawa S, Saito A. et al. Comparison of enzymatic and antifungal properties between family 18 and 19 chitinases from S. coelicolor A3(2). Biosci Biotechnol Biochem. 2006; 70: 988 98. 10.1271/bbb.70.988
Kaya M, Mujtaba M, Ehrlich H. et al. On chemistry of γ-chitin. Carbohydr Polym. 2017; 176: 177 86. 10.1016/j.carbpol.2017.08.076.
Kelbrick M, Abed RMM, Antunes A. Motilimonas cestriensis sp. nov., isolated from an inland brine spring in Northern England. Int J Syst Evol Microbiol. 2021; 71(3): 004763 10.1099/ijsem.0.004763
Keyhani NO, Roseman S. Physiological aspects of chitin catabolism in marine bacteria 1. Biochim Biophys Acta. 1999; 1473: 108 22. 10.1016/S0304-4165(99)00172-5
Kielak AM, Cretoiu MS, Semenov AV. et al. Bacterial chitinolytic communities respond to chitin and pH alteration in soil. Appl Environ Microb. 2013; 79: 263 72. 10.1128/AEM.02546-12.
Kolmogorov M, Yuan J, Lin Y. et al. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 2019; 37: 540 6. 10.1038/s41587-019-0072-8.
Krithika S, Chellaram C. Isolation, screening, and characterization of chitinase producing bacteria from marine wastes, Int J of Pharmacy and Applied Pharmaceutical Sciences. 2016. 8(5): 34 36.
Kumari R, Kumar M, Vivekanand V. et al. Chitin biorefinery: a narrative and prophecy of crustacean shell waste sustainable transformation into bioactives and renewable energy. Renew Sust Energy Rev. 2023; 184: 113595 10.1016/j.rser.2023.113595
Lau N-S, Furusawa G. Polysaccharide degradation in Cellvibrionaceae: genomic insights of the novel chitin-degrading marine bacterium, strain KSP-S5-2, and its chitinolytic activity. Sci Total Environ. 2024; 912: 169134. 10.1016/j.scitotenv.2023.169134.
Lavy A, Keren R, Yahel G. et al. Intermittent hypoxia and prolonged suboxia measured in situ in a marine sponge. Front Mar Sci. 2016; 3: 263 10.3389/fmars.2016.00263
Liang C, Yang D, Dong F. et al. Biocontrol potential of bacteria isolated from vermicompost against Meloidogyne incognita on tomato and cucumber crops. Horticulturae. 2024; 10: 407 10.3390/horticulturae10040407
Liang YY, Yan LQ, Tan MH. et al. Isolation, characterization, and genome sequencing of a novel chitin deacetylase producing Bacillus aryabhattai TCI-16. Front Microbiol. 2022; 13: 999639 10.3389/fmicb.2022.999639
Lin H, Yu M, Wang X. et al. Comparative genomic analysis reveals the evolution and environmental adaptation strategies of vibrios. BMC Genom [Electronic Resource]. 2018; 19: 135 10.1186/s12864-018-4531-2
Lin Z, Akin H, Rao R. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science. 2023; 379: 1123 30. 10.1126/science.ade2574
Ling SK, Guo LY, Chen GJ. et al. Motilimonas eburnea gen. Nov., sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol. 2017; 67: 306 10. 10.1099/ijsem.0.001621.
Ma Z, Tong J, Wang Y. et al. Isolation and characterization of a thermostable alkaline chitinase-producing Aeromonas strain and its potential in biodegradation of shrimp shell wastes. Rom Biotechnol Lett. 2021; 26: 2511 22. 10.25083/rbl/26.2/2511.2522.
Madeira F, Pearce M, Tivey ARN. et al. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 2022; 50: W276 9. 10.1093/nar/gkac240.
Manni M, Berkeley MR, Seppey M. et al. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol. 2021; 38: 4647 54. 10.1093/molbev/msab199.
Mapleson D, Accinelli GG, Kettleborough G. et al. KAT: a K-mer analysis toolkit to quality control NGS datasets and genome assemblies. Bioinformatics. 2017; 33: 574 6. 10.1093/bioinformatics/btw663.
Mathew GM, Sukumaran RK, Sindhu R. et al. Green remediation of the potential hazardous shellfish wastes generated from the processing industries and their bioprospecting. Environ Technol Innov. 2021; 24: 101979 10.1016/j.eti.2021.101979
Mehmood MA, Xiao X, Hafeez FY. et al. Purification and characterization of a chitinase from Serratia proteamaculans. World J Microbiol Biotechnol. 2009; 25: 1955 61. 10.1007/s11274-009-0094-3.
Meier-Kolthoff JP, Auch AF, Klenk H-P. et al. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinf. 2013; 14: 60. 10.1186/1471-2105-14-60
Meunier L, Costa R, Keller-Costa T et al. Selection of marine bacterial consortia efficient at degrading chitin leads to the discovery of new potential chitin degraders. Microbiol Spectr. 2024; 12: e00886 24. 10.1128/spectrum.00886-24
Minh BQ, Schmidt HA, Chernomor O. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020; 37: 1530 4. 10.1093/molbev/msaa015.
Nampoothiri KM, Baiju TV, Sandhya C. et al. Process optimization for antifungal chitinase production by Trichoderma harzianum. Process Biochem. 2004; 39: 1583 90. 10.1016/S0032-9592(03)00282-6.
Oliva G, Fontesit MR, Garratt RC. et al. Structure and catalytic mechanism of glucosamine 6-phosphate deaminase from Escherichia coli at 2.1 A resolution. Structure. 1995; 3: 1323 32. 10.1016/S0969-2126(01)00270-2
Orikoshi H, Nakayama S, Miyamoto K. et al. Roles of four chitinases (ChiA, ChiB, ChiC, and ChiD) in the chitin degradation system of marine bacterium Alteromonas sp. strain O-7. Appl Environ Microb. 2005; 71: 1811 5. 10.1128/AEM.71.4.1811-1815.2005.
Patel S, Gupta RS. A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus: proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. Int J Syst Evol Microbiol. 2020; 70: 406 38.
Paulsen SS, Strube ML, Bech PK. et al. Marine chitinolytic pseudoalteromonas represents an untapped reservoir of bioactive potential. Appl Environ Sci. 2019; 4: e00060 19.
Pollak S, Gralka M, Sato Y. et al. Public good exploitation in natural bacterioplankton communities. Sci Adv. 2021; 7: 4717 45. 10.1126/sciadv.abi4717
Pontrelli S, Szabo R, Pollak S. et al. Metabolic cross-feeding structures the assembly of polysaccharide degrading communities. Sci Adv. 2022; 8: 3076. 10.1126/sciadv.abk3076
Quast C, Pruesse E, Yilmaz P. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013; 41: D590 D596. 10.1093/nar/gks1219
Raimundo I, Silva R, Meunier L. et al. Functional metagenomics reveals differential chitin degradation and utilization features across free-living and host-associated marine microbiomes. Microbiome. 2021; 9: 43 10.1186/s40168-020-00970-2
Rathore AS, Gupta RD.. Chitinases from bacteria to human: properties, applications, and future perspectives. Enzyme Res. 2015; 2015: 791907 10.1155/2015/791907
Ren XB, Dang YR, Liu SS. et al. Identification and characterization of three chitinases with potential in direct conversion of crystalline chitin into N,N′-diacetylchitobiose. Mar Drugs. 2022; 20: 165 10.3390/md20030165
Rinaudo M. Chitin and chitosan: properties and applications. Prog Polym Sci. 2006; 31: 603 32. 10.1016/j.progpolymsci.2006.06.001.
Roy JC, Salaün F, Giraud S. et al. Solubility of chitin: solvents, solution behaviors and their related mechanisms. In: Solubility of Polysaccharides. Xu Zhenbo, London:InTech, 2017. 10.5772/66033
Saima K, M. R, Ahmad IZ. Isolation of novel chitinolytic bacteria and production optimization of extracellular chitinase. J Genetic Eng Biotechnol. 2013; 11: 39 46. 10.1016/j.jgeb.2013.03.001.
Sakai K, Yokota A, Kurokawa H. et al. Purification and characterization of three thermostable endochitinases of a noble Bacillus strain, MH-1, isolated from chitin-containing compost. Appl Environ Microb. 1998; 64: 3397 402. 10.1128/AEM.64.9.3397-3402.1998
Sipkema D, Schippers K, Maalcke WJ. et al. Multiple approaches to enhance the cultivability of bacteria associated with the marine sponge Haliclona (gellius) sp. Appl Environ Microb. 2011; 77: 2130 40. 10.1128/AEM.01203-10.
Souza CP, Almeida BC, Colwell RR. et al. The importance of chitin in the marine environment. Mar Biotechnol. 2011; 13: 823 30. 10.1007/s10126-011-9388-1.
Stackebrandt E, Mondotte JA, Fazio LL. et al. Authors need to be prudent when assigning names to microbial isolates. Curr Microbiol. 2021; 78: 4005 8. 10.1007/s00284-021-02678-4.
Svitil AL, Ad S, Níchadhain M. et al. Chitin degradation proteins produced by the marine bacterium Vibrio harveyi growing on different forms of chitin. Appl Environ Microb. 1997; 63: 408 13. 10.1128/aem.63.2.408-413.1997
Taboada B, Estrada K, Ciria R. et al. Operon-mapper: a web server for precise operon identification in bacterial and archaeal genomes. Bioinformatics. 2018; 34: 4118 20. 10.1093/bioinformatics/bty496.
Techkarnjanaruk S, Goodman AE. Multiple genes involved in chitin degradation from the marine bacterium Pseudoalteromonas sp. strain S91. Microbiology. 1999; 145: 925 34. 10.1099/13500872-145-4-925
Thomas T, Moitinho-Silva L, Lurgi M. et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun. 2016; 7: 11870 10.1038/ncomms11870
Tran DM, Huynh TU, Nguyen TH. et al. Molecular analysis of genes involved in chitin degradation from the chitinolytic bacterium Bacillus velezensis. Antonie Van Leeuwenhoek. 2022; 115: 215 31. 10.1007/s10482-021-01697-2.
Vaaje-Kolstad G, Horn SJ, Sørlie M. et al. The chitinolytic machinery of Serratia marcescens - a model system for enzymatic degradation of recalcitrant polysaccharides. FEBS J. 2013; 280: 3028 49. 10.1111/febs.12181.
Vaaje-Kolstad G, Horn SJ, Van Aalten DMF. et al. The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. J Biol Chem. 2005; 280: 28492 7. 10.1074/jbc.M504468200.
Wang FQ, Ren LH, Lin YW. et al. Motilimonas pumila sp. Nov., isolated from the gut of sea cucumber Apostichopus japonicus. Int J Syst Evol Microbiol. 2019; 69: 811 5. 10.1099/ijsem.0.003242.
Weisburg WG, Barns SM, Pelletier DA. et al. 6S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991; 173: 697 703. 10.1128/jb.173.2.697-703.1991
Wick RR, Schultz MB, Zobel J. et al. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics. 2015; 31: 3350 2. 10.1093/bioinformatics/btv383.
Xu Y, Bajaj M, Schneider R. et al. Transformation of the matrix structure of shrimp shells during bacterial deproteination and demineralization. Microb Cell Fact. 2013; 12: 90 10.1186/1475-2859-12-90
Yurgel SN, Nadeem M, Cheema M. Microbial consortium associated with crustacean shells composting. Microorganisms. 2022; 10: 1033 10.3390/microorganisms10051033
Zhang A, Mo X, Zhou N. et al. Identification of chitinolytic enzymes in Chitinolyticbacter meiyuanensis and mechanism of efficiently hydrolyzing chitin to N-acetyl glucosamine. Front Microbiol. 2020; 11: 572053 10.3389/fmicb.2020.572053
Zhang A, Wei G, Mo X. et al. Enzymatic hydrolysis of chitin pretreated by bacterial fermentation to obtain pure: n-acetyl-d-glucosamine. Green Chem. 2018; 20: 2320 7. 10.1039/C8GC00265G.
Zhang M, Haga A, Sekiguchi H. et al. Structure of insect chitin isolated from beetle larva cuticle and silkworm (Bombyx mori) pupa exuvia. Int J Biol Macromol. 2000; 27: 101 5. 10.1016/S0141-8130(99)00123-3
Zobell CE, Rittenberg SC. The occurrence and characteristics of chitinoclastic bacteria in the sea [Contributions from the Scripps Institution of Oceanography New Series]. J Bacteriol. 1937; 35: 275 87. 10.1128/jb.35.3.275-287.1938