[en] The present work addressed the abilities of two L-amino acid oxidases isolated from Bothrops moojeni (BmooLAAO-I) and Bothrops jararacussu (BjussuLAAO-II) snake venoms to control the growth and prevent the biofilm formation of clinically relevant bacterial pathogens. Upon S. aureus (ATCC BAA44) and S. aureus (clinical isolates), BmooLAAO-I (MIC = 0.12 and 0.24 μg/mL, respectively) and BjussuLAAO-II (MIC = 0.15 μg/mL) showed a potent bacteriostatic effect. Against E. coli (ATCC BAA198) and E. coli (clinical isolates), BmooLAAO-I (MIC = 15.6 and 62.5 μg/mL, respectively) and BjussuLAAO-II (MIC = 4.88 and 9.76 μg/mL, respectively) presented a lower extent effect. Also, BmooLAAO-I (MICB50 = 0.195 μg/mL) and BjussuLAAO-II (MICB50 = 0.39 μg/mL) inhibited the biofilm formation of S. aureus (clinical isolates) in 88% and 89%, respectively, and in 89% and 53% of E. coli (clinical isolates). Moreover, scanning electron microscopy confirmed that the toxins affected bacterial morphology by increasing the roughness of the cell surface and inhibited the biofilm formation. Furthermore, analysis of the tridimensional structures of the toxins showed that the surface-charge distribution presents a remarkable positive region close to the glycosylation motif, which is more pronounced in BmooLAAO-I than BjussuLAAO-II. This region may assist the interaction with bacterial and biofilm surfaces. Collectively, our findings propose that venom-derived antibiofilm agents are promising biotechnological tools which could provide novel strategies for biofilm-associated infections.
Disciplines :
Chemistry
Author, co-author :
Alves de Melo Fernandes, Thales ; Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
Rafaella Costa, Tássia; Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
de Paula Menezes, Ralciane ; Laboratory of Antimicrobial Testing, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil
Arantes de Souza, Meliza; Laboratory of Antimicrobial Testing, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil
Gomes Martins, Carlos Henrique; Laboratory of Antimicrobial Testing, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil
Junior, Nilson Nicolau ; Laboratory of Molecular Modeling, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
Gobbi Amorim, Fernanda ; Mass Spectrometry Laboratory, MolSys RU, University of Liège, 4000 Liège, Belgium
Quinton, Loïc ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie biologique
Polloni, Lorena; Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
Teixeira, Samuel Cota; Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, MG, Brazil
Amália Vieira Ferro, Eloisa ; Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, MG, Brazil
Soares, Andreimar Martins; Laboratory of Biotechnology of Proteins and Bioactive Compounds in the Western Amazon (LABIOPROT), Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Federal University of Rondônia (UNIR), And National Institute of Science and Technology of Epidemiology of the Western Amazon, INCT-EPIAMO, Porto Velho-RO, Brazil
de Melo Rodrigues Ávila, Veridiana ; Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil. Electronic address: veridiana@ufu.br
The authors gratefully acknowledge the financial support by Universidade Federal de Uberlândia ( UFU ), Conselho Nacional de Desenvolvimento Científico e Tecnológico ( CNPq ), Fundação de Amparo à Pesquisa do Estado de Minas Gerais ( FAPEMIG ) (grant number CBB – APQ-01401-17), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil ( CAPES ) and the National Institute of Science and Technology in Theranostics and Nanobiotechnology INCT-TeraNano- CNPq / CAPES / FAPEMIG (grant number CNPq-465,669/2014–0). The Q-Exactive mass spectrometer was funded by ERDF and the Walloon Region grant and Peaks X+ version Studio 10.5 software was funded by ERDF's grant: BIOMED HUB Technology Support (grant number 2.2.1/996).The authors gratefully acknowledge the financial support by Universidade Federal de Uberlândia (UFU), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) (grant number CBB – APQ-01401-17), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) and the National Institute of Science and Technology in Theranostics and Nanobiotechnology INCT-TeraNano-CNPq/CAPES/FAPEMIG (grant number CNPq-465,669/2014–0). The Q-Exactive mass spectrometer was funded by ERDF and the Walloon Region grant and Peaks X+ version Studio 10.5 software was funded by ERDF's grant: BIOMED HUB Technology Support (grant number 2.2.1/996).
Abdelkafi-Koubaa, Z., Aissa, I., Morjen, M., Kharrat, N., El Ayeb, M., Gargouri, Y., Srairi-Abid, N., Marrakchi, N., Interaction of a snake venom L-amino acid oxidase with different cell types membrane. Int. J. Biol. Macromol. 82 (2016), 757–764, 10.1016/j.ijbiomac.2015.09.065.
Abdelkafi-Koubaa, Z., Elbini-Dhouib, I., Souid, S., Jebali, J., Doghri, R., Srairi-Abid, N., Essafi-Benkhadir, K., Micheau, O., Marrakchi, N., Pharmacological investigation of CC-LAAO, an L-amino acid oxidase from Cerastes cerastes snake venom. Toxins, 13(12), 2021, 904, 10.3390/toxins13120904.
Almeida, J.R., Mendes, B., Lancellotti, M., Franchi, G.C. Jr., Passos, Ó., Ramos, M.J., Fernandes, P.A., Alves, C., Vale, N., Gomes, P., da Silva, S.L., Lessons from a single amino acid substitution: anticancer and antibacterial properties of two phospholipase A2-derived peptides. Curr. Issues Mol. Biol. 44:1 (2021), 46–62, 10.3390/cimb44010004.
Baker, N.A., Sept, D., Joseph, S., Holst, M.J., McCammon, J.A., Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. U. S. A. 98:18 (2001), 10037–10041, 10.1073/pnas.181342398.
Ballén, V., Cepas, V., Ratia, C., Gabasa, Y., Soto, S.M., Clinical Escherichia coli: from biofilm formation to new antibiofilm strategies. Microorganisms, 10(6), 2022, 1103, 10.3390/microorganisms10061103.
Barbosa, L.G., Costa, T.R., Borges, I.P., Costa, M.S., Carneiro, A.C., Borges, B.C., Silva, M.J.B., Amorim, F.G., Quinton, L., Yoneyama, K.A.G., de Melo Rodrigues, V., Sampaio, S.V., Rodrigues, R.S., A comparative study on the leishmanicidal activity of the L-amino acid oxidases BjussuLAAO-II and BmooLAAO-II isolated from Brazilian Bothrops snake venoms. Int. J. Biol. Macromol. 167 (2021), 267–278, 10.1016/j.ijbiomac.2020.11.146.
Bonten, M., Johnson, J.R., van den Biggelaar, A.H.J., Georgalis, L., Geurtsen, J., de Palacios, P.I., Gravenstein, S., Verstraeten, T., Hermans, P., Poolman, J.T., Epidemiology of Escherichia coli bacteremia: a systematic literature review. Clin. Infect. Dis. 72:7 (2021), 1211–1219, 10.1093/cid/ciaa210.
Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 (1976), 248–254, 10.1006/abio.1976.9999.
Carone, S.E.I., Costa, T.R., Burin, S.M., Cintra, A.C.O., Zoccal, K.F., Bianchini, F.J., Tucci, L.F.F., Franco, J.J., Torqueti, M.R., Faccioli, L.H., Albuquerque, S., Castro, F.A., Sampaio, S.V., A new L-amino acid oxidase from Bothrops jararacussu snake venom: isolation, partial characterization, and assessment of pro-apoptotic and antiprotozoal activities. Int. J. Biol. Macromol. 103 (2017), 25–35, 10.1016/j.ijbiomac.2017.05.025.
Cheung, G.Y.C., Bae, J.S., Otto, M., Pathogenicity and virulence of Staphylococcus aureus. Virulence 12:1 (2021), 547–569, 10.1080/21505594.2021.1878688.
CLSI (Clinical and Laboratory Standards Institute). M07-A9: methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, 9 end ed. Pennsylvanian, 32(2), 2012.
Colovos, C., Yeates, T.O., Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci. 2:9 (1993), 1511–1519, 10.1002/pro.5560020916.
Costa, T.R., Menaldo, D.L., Oliveira, C.Z., Santos-Filho, N.A., Teixeira, S.S., Nomizo, A., Fuly, A.L., Monteiro, M.C., de Souza, B.M., Palma, M.S., Stábeli, R.G., Sampaio, S.V., Soares, A.M., Myotoxic phospholipases A(2) isolated from Bothrops brazili snake venom and synthetic peptides derived from their C-terminal region: cytotoxic effect on microorganism and tumor cells. Peptides(10), 2008, 1645–1656, 10.1016/j.peptides.2008.05.021.
Costa, T.R., Menaldo, D.L., Prinholato da Silva, C., Sorrechia, R., de Albuquerque, S., Pietro, R.C., Ghisla, S., Antunes, L.M., Sampaio, S.V., Evaluating the microbicidal, antiparasitic and antitumor effects of CR-LAAO from Calloselasma rhodostoma venom. Int. J. Biol. Macromol. 80 (2015), 489–497, 10.1016/j.ijbiomac.2015.07.004.
Costa, T.R., Carone, S.E.I., Tucci, L.F.F., Menaldo, D.L., Rosa-Garzon, N.G., Cabral, H., Sampaio, S.V., Kinetic investigations and stability studies of two Bothrops L-amino acid oxidases. J. Venom. Anim. Toxins Incl. Trop. Dis., 24, 2018, 37, 10.1186/s40409-018-0172-9.
de Melo Fernandes, T.A., Teixeira, S.C., Costa, T.R., Rosini, A.M., de Souza, G., Polloni, L., Barbosa, B.F., Silva, M.J.B., Ferro, E.A.V., Ávila, V.M.R., BjussuLAAO-II, an L-amino acid oxidase from Bothrops jararacussu snake venom, impairs Toxoplasma gondii infection in human trophoblast cells and villous explants from the third trimester of pregnancy. Microb. Infect., 25(6), 2023, 105123, 10.1016/j.micinf.2023.105123.
Derby, C.D., Gilbert, E.S., Tai, P.C., Molecules and mechanisms underlying the antimicrobial activity of escapin, an L-amino acid oxidase from the ink of sea hares. Biol. Bull. 235:1 (2018), 52–61, 10.1086/699175.
Han, Y., Ma, B., Zhang, K., SPIDER: software for protein identification from sequence tags with de novo sequencing error. J. Bioinf. Comput. Biol. 3:3 (2005), 697–716, 10.1142/s0219720005001247.
J Del Pozo, J.L., Biofilm-related disease. Expert Rev. Anti Infect. Ther. 16:1 (2018), 51–65, 10.1080/14787210.2018.1417036.
Kasai, K., Nakano, M., Ohishi, M., Nakamura, T., Miura, T., Antimicrobial properties of L-amino acid oxidase: biochemical features and biomedical applications. Appl. Microbiol. Biotechnol. 105:12 (2021), 4819–4832, 10.1007/s00253-021-11381-0.
Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:5259 (1970), 680–685, 10.1038/227680a0.
Laskowisck, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.N., PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26 (1983), 283–291, 10.1107/S0021889892009944.
Lazo, F., Vivas-Ruiz, D.E., Sandoval, G.A., Rodríguez, E.F., Kozlova, E.E.G., Costal-Oliveira, F., Chávez-Olórtegui, C., Severino, R., Yarlequé, A., Sanchez, E.F., Biochemical, biological and molecular characterization of an L-amino acid oxidase (LAAO) purified from Bothrops pictus Peruvian snake venom. Toxicon 139 (2017), 74–86, 10.1016/j.toxicon.2017.10.001.
Lee, M.L., Tan, N.H., Fung, S.Y., Sekaran, S.D., Antibacterial action of a heat-stable form of L-amino acid oxidase isolated from king cobra (Ophiophagus hannah) venom. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 153:2 (2011), 237–242, 10.1016/j.cbpc.2010.11.001.
Lüthy, R., Ju, Bowie, Eisenberg, D., Assessment of protein models with three-dimensional profiles. Nature 356:6364 (1992), 83–85, 10.1038/356083a0.
Ma, B., Zhang, K., Hendrie, C., Liang, C., Li, M., Doherty-Kirby, A., Lajoie, G., PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun. Mass Spectrom. 17:20 (2003), 2337–2342, 10.1002/rcm.1196.
Machado, A.R.T., Aissa, A.F., Ribeiro, D.L., Hernandes, L.C., Machado, C.S., Bianchi, M.L.P., Sampaio, S.V., Antunes, L.M.G., The toxin BjussuLAAO-II induces oxidative stress and DNA damage, upregulates the inflammatory cytokine genes TNF and IL6, and downregulates the apoptotic-related genes BAX, BCL2 and RELA in human Caco-2 cells. Int. J. Biol. Macromol. 109 (2018), 212–219, 10.1016/j.ijbiomac.2017.12.015.
Machado, A.R.T., Aissa, A.F., Ribeiro, D.L., Ferreira, R.S. Jr., Sampaio, S.V., Antunes, L.M.G., BjussuLAAO-II induces cytotoxicity and alters DNA methylation of cell-cycle genes in monocultured/co-cultured HepG2 cells. J. Venom. Anim. Toxins Incl. Trop. Dis., 25, 2019, e147618, 10.1590/1678-9199-JVATITD-1476-18.
Machado, A.R.T., Aissa, A.F., Ribeiro, D.L., Costa, T.R., Ferreira, R.S. Jr., Sampaio, S.V., Antunes, L.M.G., Cytotoxic, genotoxic, and oxidative stress-inducing effect of an L-amino acid oxidase isolated from Bothrops jararacussu venom in a co-culture model of HepG2 and HUVEC cells. Int. J. Biol. Macromol. 127 (2019), 425–432, 10.1016/j.ijbiomac.2019.01.059.
Pereira-Crott, L.S., Casare-Ogasawara, T.M., Ambrosio, L., Chaim, L.F.P., de Morais, F.R., Cintra, A.C.O., Canicoba, N.C., Tucci, L.F.F., Torqueti, M.R., Sampaio, S.V., Marzocchi-Machado, C.M., Castro, F.A., Bothrops moojeni venom and BmooLAAO-I downmodulate CXCL8/IL-8 and CCL2/MCP-1 production and oxidative burst response, and upregulate CD11b expression in human neutrophils. Int. Immunopharm., 80, 2020, 106154, 10.1016/j.intimp.2019.106154.
Polloni, L., Costa, T.R., Morais, L.P., Borges, B.C., Teixeira, S.C., de Melo Fernandes, T.A., Correia, L.I.V., Bastos, L.M., Amorim, F.G., Quinton, L., Soares, A.M., Silva, M.J.B., Ferro, E.A.V., Lopes, D.S., de Melo Rodrigues Ávila, V., Oxidative stress induced by Pollonein-LAAO, a new L-amino acid oxidase from Bothrops moojeni venom, prompts prostate tumor spheroid cell death and impairs the cellular invasion process in vitro. Cell. Signal., 109, 2023, 110785, 10.1016/j.cellsig.2023.110785.
Rabin, N., Zheng, Y., Opoku-Temeng, C., Du, Y., Bonsu, E., Sintim, H.O., Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med. Chem. 7:4 (2015), 493–512, 10.4155/fmc.15.6.
Rey-Suárez, P., Acosta, C., Torres, U., Saldarriaga-Córdoba, M., Lomonte, B., Núñez, V., MipLAAO, a new L-amino acid oxidase from the redtail coral snake Micrurus mipartitus. PeerJ, 6, 2018, e4924, 10.7717/peerj.4924.
Ruhal, R., Kataria, R., Biofilm patterns in gram-positive and gram-negative bacteria. Microbiol. Res., 251, 2021, 126829, 10.1016/j.micres.2021.126829.
Santos-Filho, N.A., Lorenzon, E.N., Ramos, M.A., Santos, C.T., Piccoli, J.P., Bauab, T.M., Fusco-Almeida, A.M., Cilli, E.M., Synthesis and characterization of an antibacterial and non-toxic dimeric peptide derived from the C-terminal region of Bothropstoxin-I. Toxicon 103 (2015), 160–168, 10.1016/j.toxicon.2015.07.004.
Sievers, F., Higgins, D.G., Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 27:1 (2018), 135–145, 10.1002/pro.3290.
Singh, A., Amod, A., Pandey, P., Bose, P., Pingali, M.S., Shivalkar, S., Varadwaj, P.K., Sahoo, A.K., Samanta, S.K., Bacterial biofilm infections, their resistance to antibiotics therapy and current treatment strategies. Biomed. Mater.(2), 2022, 17, 10.1088/1748-605X/ac50f6.
Singkham-In, U., Thaveekarn, W., Noiphrom, J., Khow, O., Ponwaranon, S., Issara-Amphorn, J., Sitprija, V., Leelahavanichkul, A., Hydrogen peroxide from L-amino acid oxidase of king cobra (Ophiophagus hannah) venom attenuates Pseudomonas biofilms. Sci. Rep., 13(1), 2023, 11304, 10.1038/s41598-023-37914-3.
Stábeli, R.G., Sant'Ana, C.D., Ribeiro, P.H., Costa, T.R., Ticli, F.K., Pires, M.G., Nomizo, A., Albuquerque, S., Malta-Neto, N.R., Marins, M., Sampaio, S.V., Soares, A.M., Cytotoxic L-amino acid oxidase from Bothrops moojeni: biochemical and functional characterization. Int. J. Biol. Macromol. 41:2 (2007), 132–140, 10.1016/j.ijbiomac.2007.01.006.
Studer, G., Rempfer, C., Waterhouse, A.M., Gumienny, R., Haas, J., Schwede, T., QMEANDisCo-distance constraints applied on model quality estimation. Bioinformatics 36:6 (2020), 1765–1771, 10.1093/bioinformatics/btz828.
Tong, H., Chen, W., Shi, W., Qi, F., Dong, X., So-Laao, A novel L-amino acid oxidase that enables Streptococcus oligofermentans to outcompete Streptococcus mutans by generating H2O2 from peptone. J. Bacteriol. 190:13 (2008), 4716–4721, 10.1128/JB.00363-08.
Torrent, M., Di Tommaso, P., Pulido, D., Nogués, M.V., Notredame, C., Boix, E., Andreu, D., AMPA: an automated web server for prediction of protein antimicrobial regions. Bioinformatics 28:1 (2012), 130–131, 10.1093/bioinformatics/btr604.
Toyama, M.H., Toyama Dde, O., Passero, L.F., Laurenti, M.D., Corbett, C.E., Tomokane, T.Y., Fonseca, F.V., Antunes, E., Joazeiro, P.P., Beriam, L.O., Martins, M.A., Monteiro, H.S., Fonteles, M.C., Isolation of a new L-amino acid oxidase from Crotalus durissus cascavella venom. Toxicon 47:1 (2006), 47–57, 10.1016/j.toxicon.2005.09.008.
Ullah, A., Structure-Function studies and mechanism of action of snake venom L-amino acid oxidases. Front. Pharmacol., 11, 2020, 110, 10.3389/fphar.2020.00110.
Vargas Muñoz, L.J., Estrada-Gomez, S., Núñez, V., Sanz, L., Calvete, J.J., Characterization and cDNA sequence of Bothriechis schlegelii L-amino acid oxidase with antibacterial activity. Int. J. Biol. Macromol. 69 (2014), 200–207, 10.1016/j.ijbiomac.2014.05.039.
Vatansever, F., de Melo, W.C., Avci, P., Vecchio, D., Sadasivam, M., Gupta, A., Chandran, R., Karimi, M., Parizotto, N.A., Yin, R., Tegos, G.P., Hamblin, M.R., Antimicrobial strategies centered around reactive oxygen species bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol. Rev. 37:6 (2013), 955–989, 10.1111/1574-6976.12026.
Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F.T., de Beer, T.A.P., Rempfer, C., Bordoli, L., Lepore, R., Schwede, T., SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46:W1 (2018), W296–W303, 10.1093/nar/gky427.
Wiezel, G.A., Rustiguel, J.K., Morgenstern, D., Zoccal, K.F., Faccioli, L.H., Nonato, M.C., Ueberheide, B., Arantes, E.C., Insights into the structure, function and stability of bordonein-L, the first L-amino acid oxidase from Crotalus durissus terrificus snake venom. Biochimie 163 (2019), 33–49, 10.1016/j.biochi.2019.05.009.
Wilton, M., Charron-Mazenod, L., Moore, R., Lewenza, S., Extracellular DNA acidifies biofilms and induces aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 60:1 (2015), 544–553, 10.1128/AAC.01650-15.
Zhang, H., Yang, Q., Sun, M., et al. Hydrogen peroxide produced by two amino acid oxidases mediates antibacterial actions. J. Microbiol. 42 (2004), 336–339.