[en] Fertilizer type plays a critical role in nitrogen (N) cycling, influencing nitrous oxide (N2O) emissions, soil mineral N dynamics, and microbial communities. Understanding these interactions is essential for developing sustainable fertilization strategies that balance agricultural productivity with environmental protection. This study examined the effects of mineral and organic fertilizers (OFs) on N transformations and evaluated the efficiency of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in mitigating N2O losses. Results showed that OFs exhibited variable impacts on N2O emissions depending on their composition and C/N ratio. DMPP effectively reduced nitrification-driven N2O emissions, particularly in treatments with high ammoniacal N content. However, its efficiency was limited with animal-based OFs, suggesting a complex interaction between fertilizer properties and inhibitor effectiveness. DMPP had not direct impact on soil microbial diversity but specifically targeted the Nitrosomonaceae family and Nitrospira class. Beyond synthetic inhibitors, biological nitrification inhibition (BNI) emerged as a promising alternative, which we explored using rhizospheric soils from wheat landrace Persia 44 and white mustard (cv. Pole Position and cv. Verdi). These soils significantly reduced N2O emissions, particularly when combined with OFs. The integration of BNI with organic fertilizers, especially liquid digestate, represents a promising strategy for reducing N losses while maintaining soil fertility. This study underscores the need for tailored fertilization strategies that combine chemical and biological tools to optimize N use efficiency and support environmentally sustainable agriculture.
Vega-Mas, Izargi ; Plant Genetics and Rhizosphere Processes Laboratory, Gembloux Agro-Bio Tech, TERRA Teaching and Research Center, University of Liège, Gembloux, Belgium ; Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Bilbao, Spain
Mancia, Aude ; Université de Liège - ULiège > Département GxABT > Plant Sciences
Maggetto, Lucas ; Université de Liège - ULiège > Département GxABT > Plant Sciences
Waalse Gewest Basque Government SNSF - Swiss National Science Foundation Wallonia F.R.S.-FNRS - Fund for Scientific Research
Funding text :
The authors would like to acknowledge the financial support of the Walloon Region of Belgium (Wallonie agriculture SPW) grant agreement GAIN (Project D31-1378-/S1) and the SusCrop-ERA-NET Program (Project: Catch-BNI). This work was also supported by the Consolidated Groups program (IT1560-22) of the Basque Government. I.V.M. also acknowledges the Basque Government for her postdoctoral fellowship (POS-2018-1-005). H.M.K and C.T acknowledge the SNSF and FNRS for joint funding of the PlantaGO project (grant number. 310030L_220103/1). The following organisation are also acknowledged for providing organic fertilizers: S.C. Biogaz Du Haut Geer (Ga\u00EBtan de Seny) for the liquid digestate (D), CRA-W (Dr Bernard Godden) for the two animal-based fertilizers (CS and CM) and Fayt-Carlier for Orgamine 7 (O7). The company DSV (Deutsche Saatveredelung) is acknowledged for providing the seeds of both white mustard varieties. Australian Grains Genebank (AGG) is acknowledged for providing the seeds of wheat. We acknowledge the help of Jean-Claude Walser in performing bioinformatic analysis at the Euler Scientific Compute Cluster at ETH Z\u00FCrich.
Aguilera, E., Lassaletta, L., Sanz-Cobena, A., Garnier, J., Vallejo, A., The potential of organic fertilizers and water management to reduce N2O emissions in mediterranean climate cropping systems. A review. Agriculture, Ecosystems & Environment 164 (2013), 32–52, 10.1016/j.agee.2012.09.006.
Bachtsevani, E., Papazlatani, C., Rousidou · Constantina, V., Lampronikou, E., Menkissoglu-Spiroudi, U., Nicol, G.W., Karpouzas, D.G., Papadopoulou, E.S., Effects of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on the activity and diversity of the soil microbial community under contrasting soil pH. Biology and Fertility of Soils, 1, 2021, 3, 10.1007/s00374-021-01602-z.
Barrena, I., Menéndez, S., Correa-Galeote, D., Vega-Mas, I., Bedmar, E.J., González-Murua, C., Estavillo, J.M., Soil water content modulates the effect of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on nitrifying and denitrifying bacteria. Geoderma 303 (2017), 1–8, 10.1016/j.geoderma.2017.04.022.
Benckiser, G., christ, E., Herbert, T., Weiske, A., Blome, J., Hardt, M., The nitrification inhibitor 3,4-dimethylpyrazole-phosphat (DMPP) - quantification and effects on soil metabolism. Plant and Soil, 371, 2013, 10.1007/sl1104-1664-6.
Bending, G.D., Lincoln, S.D., Inhibition of soil nitrifying bacteria communities and their activities by glucosinolate hydrolysis products. Soil Biology and Biochemistry 32 (2000), 1261–1269, 10.1016/S0038-0717(00)00043-2.
Bozal-Leorri, A., Corrochano-Monsalve, M., Arregui, L.M., Aparicio-Tejo, P.M., González-Murua, C., Evaluation of a crop rotation with biological inhibition potential to avoid N2O emissions in comparison with synthetic nitrification inhibition. Journal of Environmental Sciences (China) 127 (2023), 222–233, 10.1016/j.jes.2022.04.035.
Bozal-Leorri, A., Corrochano-Monsalve, M., Vega-Mas, I., Aparicio-Tejo, P.M., González-Murua, C., Marino, D., Chemical and biological technologies inl. Evidences towards deciphering the mode of action of dimethylpyrazole-based nitrification inhibitors in soil and pure cultures of Nitrosomonas europaea. Chemical and Biological Technologies in Agriculture, 9, 2022, 56, 10.1186/s40538-022-00321-3.
Bozal-Leorri, A., Subbarao, G.V., Kishii, M., Urmeneta, L., Kommerell, V., Karwat, H., Braun, H.J., Aparicio-Tejo, P.M., Ortiz-Monasterio, I., González-Murua, C., González-Moro, M.B., Biological nitrification inhibitor-trait enhances nitrogen uptake by suppressing nitrifier activity and improves ammonium assimilation in two elite wheat varieties. Frontiers in Plant Science, 13, 2022, 10.3389/FPLS.2022.1034219.
Brown, P.D., Morra, M.J., Brassicaceae tissues as inhibitors of nitrification in soil. Journal of Agricultural and Food Chemistry 57 (2009), 7706–7711, 10.1021/jf901516h.
Butterbach-Bahl, K., Baggs, E.M., Dannenmann, M., Kiese, R., Zechmeister-Boltenstern, S., Nitrous oxide emissions from soils: how well do we understand the processes and their controls?. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 368, 2013, 20130122, 10.1098/rstb.2013.0122.
Cao, Q., Sun, X., Rajesh, K., Chalasani, N., Gelow, K., Katz, B., Shah, V.H., Sanyal, A.J., Smirnova, E., Effects of rare microbiome taxa filtering on statistical analysis. Frontiers in Microbiology, 12(11), 2021, 607325, 10.3389/fmicb.2020.607325.
Cameron, KC., Di, HJ., Moir, JL., Nitrogen losses from the soil/plant system:. a review. Ann Appl Biol 162:2 (2013), 145–173, 10.1111/aab.12014.
Carey, C.J., Dove, N.C., Beman, J.M., Hart, S.C., Aronson, E.L., Meta-analysis reveals ammonia-oxidizing bacteria respond more strongly to nitrogen addition than ammonia-oxidizing archaea. Soil Biology and Biochemistry 99 (2016), 158–166, 10.1016/j.soilbio.2016.05.014.
Cassman, K.G., Dobermann, A.R., Walters, D.T., Agroecosystems, nitrogen-use efficiency, and nitrogen agroecosystems. Nitrogen-Use Efficiency, and Nitrogen Management Management, 2002.
Cayuela, M.L., Aguilera, E., Sanz-Cobena, A., Adams, D.C., Abalos, D., Barton, L., Ryals, R., Silver, W.L., Alfaro, M.A., Pappa, V.A., Smith, P., Garnier, J., Billen, G., Bouwman, L., Bondeau, A., Lassaletta, L., Direct nitrous oxide emissions in mediterranean climate cropping systems: emission factors based on a meta-analysis of available measurement data. Agriculture, Ecosystems & Environment 238 (2017), 25–35, 10.1016/J.AGEE.2016.10.006.
Chaves, B., Opoku, A., De Neve, S., Boeckx, P., Cleemput, O., Hofman, G., Influence of DCD and DMPP on soil N dynamics after incorporation of vegetable crop residues. Biology and Fertility of Soils 43 (2006), 62–68, 10.1007/s00374-005-0061-6.
Chen, H., Li, X., Hu, F., Shi, W., Soil nitrous oxide emissions following crop residue addition: a meta-analysis. Global Change Biology 19 (2013), 2956–2964, 10.1111/GCB.12274.
Chen, H., Yin, C., Fan, X., Ye, M., Peng, H., Li, T., Zhao, Y., Wakelin, S.A., Chu, G., Liang, Y., Reduction of N2O emission by biochar and/or 3,4-dimethylpyrazole phosphate (DMPP) is closely linked to soil ammonia oxidizing bacteria and nosZI-N2O reducer populations. Science of the Total Environment, 694, 2019, 133658, 10.1016/j.scitotenv.2019.133658.
Chen, Q., Qi, L., Bi, Q., Dai, P., Sun, D., Sun, C., Liu, W., Lu, L., Ni, W., Lin, X., Comparative effects of 3,4-dimethylpyrazole phosphate (DMPP) and dicyandiamide (DCD) on ammonia-oxidizing bacteria and archaea in a vegetable soil. Applied Microbiology and Biotechnology 99 (2015), 477–487, 10.1007/s00253-014-6026-7.
Corrochano-Monsalve, M., González-Murua, C., Estavillo, J.M., Estonba, A., Zarraonaindia, I., Unraveling DMPSA nitrification inhibitor impact on soil bacterial consortia under different tillage systems. Agriculture, Ecosystems and Environment, 301, 2020, 107029, 10.1016/j.agee.2020.107029.
Corrochano-Monsalve, M., González-Murua, C., Estavillo, J.M., Estonba, A., Zarraonaindia, I., Impact of dimethylpyrazole-based nitrification inhibitors on soil-borne bacteria. The Science of the Total Environment, 792, 2021, 148374, 10.1016/J.SCITOTENV.2021.148374.
Coskun, D., Britto, D.T., Shi, W., Kronzucker, H.J., How plant root exudates shape the nitrogen cycle. Trends in Plant Science 22 (2017), 661–673, 10.1016/j.tplants.2017.05.004.
Daims, H., Lebedeva, E.V., Pjevac, P., Han, P., Herbold, C., Albertsen, M., Jehmlich, N., Palatinszky, M., Vierheilig, J., Bulaev, A., Kirkegaard, R.H., Von Bergen, M., Rattei, T., Bendinger, B., Nielsen, P.H., Wagner, M., Complete nitrification by Nitrospira bacteria. Nature, 528, 2015, 504, 10.1038/NATURE16461.
De Cáceres, M., Legendre, P., Wiser, S.K., Brotons, L., Using species combinations in indicator value analyses. Methods in Ecology and Evolution 3 (2012), 973–982, 10.1111/j.2041-210X.2012.00246.x.
Edgar, R.C., Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26 (2010), 2460–2461, 10.1093/bioinformatics/btq461.
Edgar, R.C., UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods 10 (2013), 996–998, 10.1038/nmeth.2604.
Edgar, R.C., SINTAX: a simple Non-Bayesian taxonomy classifier for 16S and ITS sequences. bioRxiv, 2016, 074161, 10.1101/074161.
Erisman, J.W., Galloway, J.N., Seitzinger, S., Bleeker, A., Dise, N.B., Roxana Petrescu, A.M., Leach, A.M., de Vries, W., Consequences of human modification of the global nitrogen cycle. Philosophical Transactions of the Royal Society B: Biological Sciences, 368, 2013, 20130116, 10.1098/rstb.2013.0116.
Fan, X., Yin, C., Chen, H., Ye, M., Zhao, Y., Li, T., Wakelin, S.A., Liang, Y., The efficacy of 3,4-dimethylpyrazole phosphate on N2O emissions is linked to niche differentiation of ammonia oxidizing archaea and bacteria across four arable soils. Soil Biology and Biochemistry 130 (2019), 82–93, 10.1016/j.soilbio.2018.11.027.
Gilsanz, C., Báez, D., Misselbrook, T.H., Dhanoa, M.S., Cárdenas, L.M., Development of emission factors and efficiency of two nitrification inhibitors, DCD and DMPP. Agriculture, Ecosystems & Environment 216 (2016), 1–8, 10.1016/j.agee.2015.09.030.
Guo, T., Bai, S.H., Omidvar, N., Wang, Y., Chen, F., Zhang, M., Insight into the functional mechanisms of nitrogen-cycling inhibitors in decreasing yield-scaled ammonia volatilization and nitrous oxide emission: a global meta-analysis. Chemosphere, 338, 2023, 139611, 10.1016/J.CHEMOSPHERE.2023.139611.
Guyomard, H., Bureau, J.-C., et al. Research for AGRI Committee – the Green Deal and the CAP: Policy Implications to Adapt Farming Practices and to Preserve the Eu's Natural Resources. European Parliament. 2020, Policy Department for Structural and Cohesion Policies, Brussels.
Haque, F., Fan, C., Lee, Y., From waste to value: Addressing the relevance of waste recovery to agricultural sector in line with circular economy. Journal of Cleaner Production, 415, 2023, 137873.
Heuermann, D., Gentsch, N., Boy, J., Schweneker, D., Feuerstein, U., Groß, J., Bauer, B., Guggenberger, G., von Wirén, N., Interspecific competition among catch crops modifies vertical root biomass distribution and nitrate scavenging in soils. Scientific Reports 9 (2019), 1–11, 10.1038/s41598-019-48060-0.
Huérfano, X., Estavillo, J.M., Torralbo, F., Vega-Mas, I., González-Murua, C., Fuertes-Mendizábal, T., Dimethylpyrazole-based nitrification inhibitors have a dual role in N2O emissions mitigation in forage systems under Atlantic climate conditions. The Science of the Total Environment, 807, 2022, 150670, 10.1016/J.SCITOTENV.2021.150670.
Huf, M., Olfs, H., Effect of the nitrification inhibitor DMPP on nitrous oxide emissions and the stabilization of ammonium following the injection of dairy slurry and digestate in a soil-column experiment. Journal of Plant Nutrition and Soil Science 183 (2020), 129–135.
Jáuregui, I., Vega-Mas, I., Delaplace, P., Vanderschuren, H., Thonar, C., An optimized hydroponic pipeline for large-scale identification of wheat genotypes with resilient biological nitrification inhibition activity. New Phytol 238 (2023), 1711–1721, 10.1111/NPH.18807.
Kalbitz, K., Solinger, S., Park, J.H., Michalzik, B., Matzner, E., Controls on the dynamics of dissolved organic matter in soils: a review. Soil Science 165 (2000), 277–304, 10.1097/00010694-200004000-00001.
Kindt, R., Coe, R., Tree Diversity Analysis. A Manual and Software for Common Statistical Methods for Ecological and Biodiversity Studies. 2005, World Agroforestry Centre, Nairobi.
Kleineidam, K., Košmrlj, K., Kublik, S., Palmer, I., Pfab, H., Ruser, R., Fiedler, S., Schloter, M., Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on ammonia-oxidizing bacteria and archaea in rhizosphere and bulk soil. Chemosphere 84 (2011), 182–186, 10.1016/J.CHEMOSPHERE.2011.02.086.
Lazcano, C., Gómez-Brandón, M., Revilla, P., Domínguez, J., Short-term effects of organic and inorganic fertilizers on soil microbial community structure and function. Biology and Fertility of Soils 49 (2013), 723–733, 10.1007/s00374-012-0761-7.
Lei, J., Fan, Q., Yu, J., Ma, Y., Yin, J., Liu, R., A meta-analysis to examine whether nitrification inhibitors work through selectively inhibiting ammonia-oxidizing bacteria. Frontiers in Microbiology, 13, 2022, 962146, 10.3389/FMICB.2022.962146/BIBTEX.
Li, H. Ruo, Song, X. Tong, Bakken, L.R., Ju, X. Tang, Reduction of N2O emissions by DMPP depends on the interactions of nitrogen sources (digestate vs. urea) with soil properties. Journal of Integrative Agriculture 22 (2023), 251–264, 10.1016/J.JIA.2022.08.009.
Li, H., Song, X., Wu, D., Wei, D., Li, Y., Ju, X., Partial substitution of manure increases N2O emissions in the alkaline soil but not acidic soils. Journal of Environmental Management, 359, 2024, 120993, 10.1016/J.JENVMAN.2024.120993.
Lognoul, M., Debacq, A., De Ligne, A., Dumont, B., Manise, T., Bodson, B., Heinesch, B., Aubinet, M., N2O flux short-term response to temperature and topsoil disturbance in a fertilized crop: an eddy covariance campaign. Agricultural and Forest Meteorology 271 (2019), 193–206, 10.1016/j.agrformet.2019.02.033.
Lori, M., Armengot, L., Schneider, M., Schneidewind, U., Bodenhausen, N., Mäder, P., Krause, H.-M., Organic management enhances soil quality and drives microbial community diversity in cocoa production systems. The Science of the Total Environment, 834, 2022, 155223, 10.1016/j.scitotenv.2022.155223.
Lori, M., Hartmann, M., Kundel, D., Mayer, J., Mueller, R.C., Mäder, P., Krause, H.M., Soil microbial communities are sensitive to differences in fertilization intensity in organic and conventional farming systems. FEMS Microbiology Ecology, 99, 2023, fiad046, 10.1093/femsec/fiad046.
Lynch, J., Cain, M., Frame, D., Pierrehumbert, R., Agriculture's contribution to climate change and role in mitigation is distinct from predominantly fossil CO2-Emitting sectors. Frontiers in Sustainable Food Systems, 4, 2021, 10.3389/fsufs.2020.518039.
Ma, Y., Kang, L., Li, Y., Zhang, X., Cardenas, L.M., Chen, Q., Is sorghum a promising summer catch crop for reducing nitrate accumulation and enhancing eggplant yield in intensive greenhouse vegetable systems?. Plant and Soil 499 (2023), 1–13, 10.1007/S11104-023-05923-W.
McMurdie, P.J., Holmes, S., Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One, 8, 2013, e61217, 10.1371/journal.pone.0061217.
Miranda, K.M., Espey, M.G., Wink, D.A., A rapid, simple spectrophotometric method for simultaneous detection ofnitrate and nitrite. Nitric Oxide 5 (2001), 62–71.
Mooshammer, M., Wanek, W., Hämmerle, I., Fuchslueger, L., Hofhansl, F., Knoltsch, A., et al. Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling. Nature Communications, 5, 2014, 3694, 10.1038/ncomms4694.
O'Sullivan, C.A., Fillery, I.R.P., Roper, M.M., Richards, R.A., Identification of several wheat landraces with biological nitrification inhibition capacity. Plant and Soil 404 (2016), 61–74, 10.1007/s11104-016-2822-4.
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Sólymos, P., Stevens, M. H. H., Wagner, H., 2012. vegan: Community Ecology Package. Software http://CRAN.R-project.org/package=vegan.
Otaka, J., Subbarao, G.V., Ono, H., Yoshihashi, T., Biological nitrification inhibition in maize—isolation and identification of hydrophobic inhibitors from root exudates. Biology and Fertility of Soils, 2021, 1–14, 10.1007/S00374-021-01577-X/FIGURES/10.
Ouyang, Y., Norton, J.M., Stark, J.M., Ammonium availability and temperature control contributions of ammonia oxidizing bacteria and archaea to nitrification in an agricultural soil. Soil Biology and Biochemistry 113 (2017), 161–172.
Patton, C.J., Crouch, S.R., Spectrophotometric and kinetics investigation of the berthelot reaction for the determination ofammonia. Analytical Chemistry 49 (1977), 464–469.
Peixoto, L., Petersen, S.O., Efficacy of three nitrification inhibitors to reduce nitrous oxide emissions from pig slurry and mineral fertilizers applied to spring barley and winter wheat in Denmark. Geoderma Regional, 32, 2023, e00597, 10.1016/J.GEODRS.2022.E00597.
Petersen, S.O., Peixoto, L.E.K., Sørensen, H., Tariq, A., Brændholt, A., Hansen, L.V., Abalos, D., Christensen, A.T., Nielsen, C.S., Pullens, J.W.M., Bruun, S., Jensen, L.S., Olesen, J.E., Higher N2O emissions from organic compared to synthetic N fertilisers on sandy soils in a cool temperate climate. Agriculture, Ecosystems & Environment, 358, 2023, 108718, 10.1016/J.AGEE.2023.108718.
Pilegaard, K., Processes regulating nitric oxide emissions from soils. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 368, 2013, 20130126, 10.1098/rstb.2013.0126.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.O., The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research 41 (2013), D590–D596, 10.1093/nar/gks1219.
Sadhukhan, R., Jatav, H.S., Sen, S., Sharma, L.D., Rajput, V.D., Thangjam, R., Devedee, A.K., Singh, S.K., Gorovtsov, A., Choudhury, S., Patra, K., Biological nitrification inhibition for sustainable crop production. Plant Perspectives to Global Climate Changes: Developing Climate-Resilient Plants, 2022, 135–150, 10.1016/B978-0-323-85665-2.00007-8.
Saggar, S., Jha, N., Deslippe, J., Bolan, N.S., Luo, J., Giltrap, D.L., Kim, D.-G., Zaman, M., Tillman, R.W., Denitrification and N2O:N2 production in temperate grasslands: processes, measurements, modelling and mitigating negative impacts. The Science of the Total Environment 465 (2013), 173–195, 10.1016/j.scitotenv.2012.11.050.
Saud, S., Wang, D., Fahad, S., Improved nitrogen use efficiency and greenhouse gas emissions in agricultural soils as producers of biological nitrification inhibitors. Frontiers in Plant Science, 13, 2022, 534, 10.3389/fpls.2022.854195.
Schmieder, R., Edwards, R., Quality control and preprocessing of metagenomic datasets. Bioinformatics 27 (2011), 863–864, 10.1093/bioinformatics/btr026.
Soares, J.R., Souza, B.R., Mazzetto, A.M., Galdos, M.V., Chadwick, D.R., Campbell, E.E., Jaiswal, D., Oliveira, J.C., Monteiro, L.A., Vianna, M.S., Lamparelli, R.A.C., Figueiredo, G.K.D.A., Sheehan, J.J., Lynd, L.R., Mitigation of nitrous oxide emissions in grazing systems through nitrification inhibitors: a meta-analysis. Nutrient Cycling in Agroecosystems 125 (2023), 359–377, 10.1007/s10705-022-10256-8.
Subbarao, G.V., Kishii, M., Bozal-Leorri, A., Ortiz-Monasterio, I., Gao, X., Ibba, M.I., Karwat, H., Gonzalez-Moro, M.B., Gonzalez-Murua, C., Yoshihashi, T., Tobita, S., Kommerell, V., Braun, H.-J., Iwanaga, M., Enlisting wild grass genes to combat nitrification in wheat farming: a nature-based solution. Proceedings of the National Academy of Sciences, 118, 2021, e2106595118, 10.1073/PNAS.2106595118.
Subbarao, G.V., Searchinger, T.D., A “more ammonium solution” to mitigate nitrogen pollution and boost crop yields. Proceedings of the National Academy of Sciences of the United States of America, 2021, 10.1073/pnas.2107576118.
Subbarao, G.V., Rondon, M., Ito, O., Ishikawa, T., Rao, I.M., Nakahara, K., Lascano, C., Berry, W.L., Biological nitrification inhibition (BNI)—Is it a widespread phenomenon?. Plant and Soil 294 (2007), 5–18, 10.1007/s11104-006-9159-3.
Subbarao, G.V., Tomohiro, B., Masahiro, K., Osamu, I., Samejima, H., Wang, H.Y., Pearse, S.J., Gopalakrishnan, S., Nakahara, K., Zakir Hossain, A.K.M., Tsujimoto, H., Berry, W.L., Can biological nitrification inhibition (BNI) genes from perennial Leymus racemosus (Triticeae) combat nitrification in wheat farming?. Plant and Soil 299 (2007), 55–64, 10.1007/s11104-007-9360-z.
Suleiman, A.K.A., Gonzatto, R., Aita, C., Lupatini, M., Jacques, R.J.S., Kuramae, E.E., Antoniolli, Z.I., Roesch, L.F.W., Temporal variability of soil microbial communities after application of dicyandiamide-treated swine slurry and mineral fertilizers. Soil Biology and Biochemistry 97 (2016), 71–82, 10.1016/J.SOILBIO.2016.03.002.
Sun, H., Li, Youfa, Xing, Y., Bodington, D., Huang, X., Ding, C., Ge, T., Di, H., Xu, J., Gubry-Rangin, C., Li, Yong, Organic fertilizer significantly mitigates N2O emissions while increase contributed of comammox Nitrospira in paddy soils. Science of the Total Environment, 954, 2024, 10.1016/J.SCITOTENV.2024.176578.
Torralbo, F., Menéndez, S., Barrena, I., Estavillo, J.M., Marino, D., González-Murua, C., Dimethyl pyrazol-based nitrification inhibitors effect on nitrifying and denitrifying bacteria to mitigate N2O emission. Scientific Reports, 7, 2017, 13810, 10.1038/s41598-017-14225-y.
Tufail, M.A., Irfan, M., Umar, W., Wakeel, A., Schmitz, R.A., Mediation of gaseous emissions and improving plant productivity by DCD and DMPP nitrification inhibitors: meta-analysis of last three decades. Environmental Science and Pollution Research 30 (2023), 64719–64735, 10.1007/s11356-023-26318-5.
United Nations, 2019. Department of Economic and Social Affairs, Population Division. World Population Prospects 2024: Data Sources. https://population.un.org/wpp/publications Accesed on September, 2025.
Valkama, E., Tzemi, D., Esparza-Robles, U.R., Syp, A., O'Toole, A., Maenhout, P., Effectiveness of soil management strategies for mitigation of N2O emissions in European arable land: a meta-analysis. European Journal of Soil Science, 75, 2024, e13488, 10.1111/EJSS.13488.
Vega-Mas, I., Ascencio-Medina, E., Menéndez, S., González-Torralba, J., González-Murua, C., Marino, D., González-Moro, M.B., Selecting an optimal sorghum cultivar can improve nitrogen availability and wheat yield in crop rotation. Journal of the Science of Food and Agriculture, 2024, 10.1002/JSFA.13969.
Wang, Q., Zhao, Z., Yuan, M., Zhang, Z., Chen, S., Ruan, Y., Huang, Q., Impacts of urea and 3,4-dimethylpyrazole phosphate on nitrification, targeted ammonia oxidizers, non-targeted nitrite oxidizers, and bacteria in two contrasting soils. Frontiers in Microbiology, 13, 2022, 10.3389/FMICB.2022.952967.
Wang, X., Bai, J., Xie, T., Wang, W., Zhang, G., Yin, S., Wang, D., Effects of biological nitrification inhibitors on nitrogen use efficiency and greenhouse gas emissions in agricultural soils: a review. Ecotoxicology and Environmental Safety, 2021, 10.1016/j.ecoenv.2021.112338.
Ward, B.B., Nitrification. Encyclopedia of Ecology, 1-4, second ed., 2015, Elsevier, 351–358, 10.1016/B978-0-12-409548-9.00697-7.
Wu, D., Zhang, Y., Dong, G., Du, Z., Wu, W., Chadwick, D., Bol, R., The importance of ammonia volatilization in estimating the efficacy of nitrification inhibitors to reduce N2O emissions: a global meta-analysis. Environmental Pollution, 271, 2021, 116365, 10.1016/J.ENVPOL.2020.116365.
Wu, G., Yang, S., Luan, C. sheng, Wu, Q., Lin, L. li, Li, X. xiao, Che, Z., Zhou, D. bao, Dong, Z. rong, Song, H., Partial organic substitution for synthetic fertilizer improves soil fertility and crop yields while mitigating N2O emissions in wheat-maize rotation system. European Journal of Agronomy, 154, 2024, 127077, 10.1016/J.EJA.2023.127077.
Yan, X., Gong, W., The role of chemical and organic fertilizers on yield, yield variability and carbon sequestration— results of a 19-year experiment. Plant and Soil 331 (2010), 471–480, 10.1007/s11104-009-0268-7.
Yang, M., Fang, Y., Sun, D., Shi, Y., Efficiency of two nitrification inhibitors (dicyandiamide and 3, 4-dimethypyrazole phosphate) on soil nitrogen transformations and plant productivity: a meta-analysis. Scientific Reports, 6, 2016, 22075, 10.1038/srep22075.
Yang, M., Fang, Y., Sun, D., Shi, Y., Efficiency of two nitrification inhibitors (dicyandiamide and 3, 4-dimethypyrazole phosphate) on soil nitrogen transformations and plant productivity: a meta-analysis. Scientific Reports 6:1 6 (2016), 1–10, 10.1038/srep22075 2016.
Yin, M., Gao, X., Kuang, W., Zhang, Y., Meta-analysis of the effect of nitrification inhibitors on the abundance and community structure of N2O-related functional genes in agricultural soils. Science of the Total Environment, 865, 2023, 10.1016/J.SCITOTENV.2022.161215.
Yuan, Y., Wang, M., Feng, X., Li, Q., Qin, Y., Sun, B., Li, C., Zhang, J., Liu, H., Effects of nitrogen fertilizer on Nitrospira- and nitrobacter-like nitrite-oxidizing bacterial microbial communities under mulched fertigation system in semi-arid area of Northeast China. Agronomy, 13, 2023, 2909, 10.3390/agronomy13122909.
Zhang, M., Gao, X., Chen, G., Afzal, M.R., Wei, T., Zeng, H., Subbarao, G.V., Wei, Z., Zhu, Y., Intercropping with BNI-sorghum benefits neighbouring maize productivity and mitigates soil nitrification and N2O emission. Agriculture, Ecosystems and Environment, 352, 2023, 108510, 10.1016/J.AGEE.2023.108510.
Zhang, M., Wang, W., Zhang, Y., Teng, Y., Xu, Z., Effects of fungicide iprodione and nitrification inhibitor 3, 4-dimethylpyrazole phosphate on soil enzyme and bacterial properties. The Science of the Total Environment 599:600 (2017), 254–263, 10.1016/J.SCITOTENV.2017.05.011.
Zhang, H., Zheng, X., Bai, N., Li, S., Zhang, J., Lv, W., Responses of Soil Bacterial and Fungal Communities to Organic and Conventional Farming Systems in East China. Journal of Microbiology and Biotechnology 29 (2019), 441–453, 10.4014/jmb.1809.09007.
Zhou, J., Guan, D., Zhou, B., Zhao, B., Ma, M., Qin, J., Jiang, X., Chen, S., Cao, F., Shen, D., Li, J., Influence of 34-years of fertilization on bacterial communities in an intensively cultivated black soil in northeast China. Soil Biology and Biochemistry 90 (2015), 42–51, 10.1016/J.SOILBIO.2015.07.005.
Zhou, X., Wang, S., Ma, S., Zheng, X., Wang, Z., Lu, C., Effects of commonly used nitrification inhibitors—dicyandiamide (DCD), 3,4-dimethylpyrazole phosphate (DMPP), and nitrapyrin—on soil nitrogen dynamics and nitrifiers in three typical paddy soils. Geoderma, 380, 2020, 114637, 10.1016/j.geoderma.2020.114637.