Comparative Insights Into the Complete Genome Sequence of Highly Metal Resistant Cupriavidus metallidurans Strain BS1 Isolated From a Gold-Copper Mine. - 2020
Comparative Insights Into the Complete Genome Sequence of Highly Metal Resistant Cupriavidus metallidurans Strain BS1 Isolated From a Gold-Copper Mine.
Mazhar, Sohaib H; Herzberg, Martin; Ben Fekih, Ibtissemet al.
Cupriavidus metallidurans; cation diffusion facilitators; complete genome; gold–copper mine; heavy metal efflux systems
Abstract :
[en] The highly heavy metal resistant strain Cupriavidus metallidurans BS1 was isolated from the Zijin gold-copper mine in China. This was of particular interest since the extensively studied, closely related strain, C. metallidurans CH34 was shown to not be only highly heavy metal resistant but also able to reduce metal complexes and biomineralizing them into metallic nanoparticles including gold nanoparticles. After isolation, C. metallidurans BS1 was characterized and complete genome sequenced using PacBio and compared to CH34. Many heavy metal resistance determinants were identified and shown to have wide-ranging similarities to those of CH34. However, both BS1 and CH34 displayed extensive genome plasticity, probably responsible for significant differences between those strains. BS1 was shown to contain three prophages, not present in CH34, that appear intact and might be responsible for shifting major heavy metal resistance determinants from plasmid to chromid (CHR2) in C. metallidurans BS1. Surprisingly, the single plasmid - pBS1 (364.4 kbp) of BS1 contains only a single heavy metal resistance determinant, the czc determinant representing RND-type efflux system conferring resistance to cobalt, zinc and cadmium, shown here to be highly similar to that determinant located on pMOL30 in C. metallidurans CH34. However, in BS1 another homologous czc determinant was identified on the chromid, most similar to the czc determinant from pMOL30 in CH34. Other heavy metal resistance determinants such as cnr and chr determinants, located on megaplasmid pMOL28 in CH34, were shown to be adjacent to the czc determinant on chromid (CHR2) in BS1. Additionally, other heavy metal resistance determinants such as pbr, cop, sil, and ars were located on the chromid (CHR2) and not on pBS1 in BS1. A diverse range of genomic rearrangements occurred in this strain, isolated from a habitat of constant exposure to high concentrations of copper, gold and other heavy metals. In contrast, the megaplasmid in BS1 contains mostly genes encoding unknown functions, thus might be more of an evolutionary playground where useful genes could be acquired by horizontal gene transfer and possibly reshuffled to help C. metallidurans BS1 withstand the intense pressure of extreme concentrations of heavy metals in its environment.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Mazhar, Sohaib H ✱; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China ; Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
Herzberg, Martin ✱; Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
Ben Fekih, Ibtissem ; Université de Liège - ULiège > Département GxABT > Gestion durable des bio-agresseurs ; Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
Zhang, Chenkang; Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China ; College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
Bello, Suleiman Kehinde; Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
Li, Yuan Ping; Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
Su, Junming; Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
Xu, Junqiang; Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
Feng, Renwei; Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
Zhou, Shungui; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
Rensing, Christopher; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China ; Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
✱ These authors have contributed equally to this work.
Language :
English
Title :
Comparative Insights Into the Complete Genome Sequence of Highly Metal Resistant Cupriavidus metallidurans Strain BS1 Isolated From a Gold-Copper Mine.
NSCF - National Natural Science Foundation of China
Funding text :
This research was funded by National Natural Science Foundation of China (NSFC) grant number 31770123, and State administration of Foreign Expert Project numbers GDT20173600005 and 110000214620170006.
Ali M. M., Provoost A., Maertens L., Leys N., Monsieurs P., Charlier D., et al. (2019). Genomic and transcriptomic changes that mediate increased platinum resistance in Cupriavidus metallidurans. Genes 10:E63. 10.3390/genes10010063 30669395
Altschul S., (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25 3389–3402. 10.1093/nar/25.17.3389 9254694
Anton A., Grass G., Rensing C., Nies D. H., (2004). Characteristics of zinc transport by two bacterial cation diffusion facilitators from Ralstonia metallidurans CH34 and Escherichia coli. J. Bacteriol. 186 7499–7507. 10.1128/JB.186.22.7499 15516561
Ashburner M., Ball C. A., Blake J. A., Botstein D., Butler H., Cherry J. M., et al. (2000). Gene ontology: tool for the unification of biology. Nat. Genet. 25 25–29. 10.1038/75556 10802651
Aziz R. K., Bartels D., Best A., DeJongh M., Disz T., Edwards R. A., et al. (2008). The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75. 10.1186/1471-2164-9-75 18261238
Blondel V. D., Guillaume J. L., Lambiotte R., Lefebvre E., (2008). Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008:10008. 10.1088/1742-5468/2008/10/P10008 21517554
Brocklehurst K. R., Hobman J. L., Lawley B., Blank L., Marshall S. J., Brown N. L., et al. (1999). ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli. Mol. Microbiol. 31 893–902. 10.1046/j.1365-2958.1999.01229.x 10048032
Brown N. L., Stoyanov J. V., Kidd S. P., Hobman J. L., (2003). The MerR family of transcriptional regulators. FEMS Microbiol. Rev. 27 145–163. 10.1016/s0168-6445(03)00051-2 12829265
Bütof L., Schmidt-Vogler C., Herzberg M., Große C., Nies D. H., (2017). The components of the unique Zur regulon of Cupriavidus metallidurans mediate cytoplasmic Zinc handling. J. Bacteriol. 199:e00372-17. 10.1128/JB.00372-17 28808127
Bütof L., Wiesemann N., Herzberg M., Altzschner M., Holleitner A., Reith F., et al. (2018). Synergistic gold-copper detoxification at the core of gold biomineralisation in: Cupriavidus metallidurans. Metallomics 10 278–286. 10.1039/c7mt00312a 29308809
Chan P. P., Lowe T. M., (2019). tRNAscan-SE: searching for tRNA genes in genomic sequences. Methods Mol. Biol. 1962 1–14. 10.1007/978-1-4939-9173-0_1 31020551
Chandrangsu P., Huang X., Gaballa A., Helmann J. D., (2019). Bacillus subtilis FolE is sustained by the ZagA zinc metallochaperone and the alarmone ZTP under conditions of zinc deficiency. Mol. Microbiol. 112 751–765. 10.1111/mmi.14314 31132310
Checa S. K., Espariz M., Audero M. E. P., Botta P. E., Spinelli S. V., Soncini F. C., (2007). Bacterial sensing of and resistance to gold salts. Mol. Microbiol. 63 1307–1318. 10.1111/j.1365-2958.2007.05590.x 17244194
Collard J. M., Provoost A., Taghavi S., Mergeay M., (1993). A new type of Alcaligenes eutrophus CH34 zinc resistance generated by mutations affecting regulation of the cnr cobalt-nickel resistance system. J. Bacteriol. 175 779–784. 10.1128/jb.175.3.779-784.1993 8423150
Cromie M. J., Groisman E. A., (2010). Promoter and riboswitch control of the Mg2+ transporter MgtA from Salmonella enterica. J. Bacteriol. 192 604–607. 10.1128/JB.01239-09 19897653
Delcher A. L., Bratke K. A., Powers E. C., Salzberg S. L., (2007). Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23 673–679. 10.1093/bioinformatics/btm009 17237039
Diels L., Mergeay M. A. X., (1990). DNA probe-mediated detection of resistant bacteria from soils highly polluted by heavy metals. Appl. Environ. Microbiol. 56 1485–1491. 10.1128/aem.56.5.1485-1491.1990 16348196
Edward W., Yu Q. Z., Baugh M. H., (eds) (2013). “RND-efflux pumps for metal cations,” in Microbial Efflux Pumps: Current Research, (Berlin: Springer), 1–13.
Fagan M. J., Saier M. H., (1994). P-type ATPases of eukaryotes and bacteria: sequence analyses and construction of phylogenetic trees. J. Mol. Evol. 38 57–99. 10.1007/BF00175496 8151716
Fairbrother L., Etschmann B., Brugger J., Shapter J., Southam G., Reith F., (2013). Biomineralization of gold in biofilms of Cupriavidus metallidurans. Environ. Sci. Technol. 47 2628–2635. 10.1021/es302381d 23405956
Fan B., Rosen B. P., (2002). Biochemical characterization of CopA, the Escherichia coli Cu(I)-translocating P-type ATPase. J. Biol. Chem. 277 46987–46992. 10.1074/jbc.M208490200 12351646
Fang L.-C., Chen Y.-F., Zhou Y.-L., Wang D.-S., Sun L.-N., Tang X.-Y., et al. (2016). Complete genome sequence of a novel chlorpyrifos degrading bacterium, Cupriavidus nantongensis X1. J. Biotechnol. 227 1–2. 10.1016/j.jbiotec.2016.04.012 27063140
Finn R. D., Coggill P., Eberhardt R. Y., Eddy S. R., Mistry J., Mitchell A. L., et al. (2016). The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44 D279–D285. 10.1093/nar/gkv1344 26673716
Galperin M. Y., Makarova K. S., Wolf Y. I., Koonin E. V., (2015). Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 43 D261–D269. 10.1093/nar/gku1223 25428365
Gardner P. P., Daub J., Tate J. G., Nawrocki E. P., Kolbe D. L., Lindgreen S., et al. (2009). Rfam: updates to the RNA families database. Nucleic Acids Res. 37 D136–D140. 10.1093/nar/gkn766 18953034
Gent U., Mol B., Goris J., De Vos P., Coenye T., Hoste B., et al. (2001). Classification of metal-resistant bacteria from industrial biotopes as Ralstonia campinensis sp. nov., Ralstonia metallidurans sp. nov. and Ralstonia basilensis Steinle et al. 1998 emend. Int. J. Syst. Evol. Microbiol. 51 1773–1782. 10.1099/00207713-51-5-1773 11594608
Getaneh W., Alemayehu T., (2006). Metal contamination of the environment by placer and primary gold mining in the Adola region of southern Ethiopia. Environ. Geol. 50 339–352. 10.1007/s00254-006-0213-5
González-Guerrero M., Raimunda D., Cheng X., Argüello J. M., (2010). Distinct functional roles of homologous Cu+ efflux ATPases in Pseudomonas aeruginosa. Mol. Microbiol. 78 1246–1258. 10.1111/j.1365-2958.2010.07402.x 21091508
Grass G., Große C., Nies D. H., (2000). Regulation of the cnr cobalt and nickel resistance determinant of Ralstonia eutropha (Alcaligenes eutrophus) CH34. J. Bacteriol. 182 1390–1398. 10.1128/JB.182.5.1390-1398.2000 10671463
Grass G., Otto M., Fricke B., Haney C. J., Rensing C., Nies D. H., et al. (2005). FieF (YiiP) from Escherichia coli mediates decreased cellular accumulation of iron and relieves iron stress. Arch. Microbiol. 183 9–18. 10.1007/s00203-004-0739-4 15549269
Grissa I., Vergnaud G., Pourcel C., (2007). CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res. 35 52–57. 10.1093/nar/gkm360 17537822
Grosse C., Friedrich S., Nies D. H., (2007). Contribution of extracytoplasmic function sigma factors to transition metal homeostasis in Cupriavidus metallidurans strain CH34. J. Mol. Microbiol. Biotechnol. 12 227–240. 10.1159/000099644 17587871
Große C., Poehlein A., Blank K., Schwarzenberger C., Schleuder G., Herzberg M., et al. (2019). The third pillar of metal homeostasis in Cupriavidus metallidurans CH34: preferences are controlled by extracytoplasmic function sigma factors. Metallomics 11 291–316. 10.1039/C8MT00299A 30681120
Heimann J. D., (2002). The extracytoplasmic function (ECF) sigma factors. Adv. Microb. Physiol. 46 47–110. 10.1016/S0065-2911(02)46002-X 12073657
Herzberg M., Bauer L., Kirsten A., Nies D. H., (2016). Interplay between seven secondary metal uptake systems is required for full metal resistance of Cupriavidus metallidurans. Metallomics 8 313–326. 10.1039/C5MT00295H 26979555
Herzberg M., Bauer L., Nies D. H., (2014a). Deletion of the zupT gene for a zinc importer influences zinc pools in Cupriavidus metallidurans CH34. Metallomics 6 421–436. 10.1039/c3mt00267e 24407051
Herzberg M., Dobritzsch D., Helm S., Baginsky S., Nies D. H., (2014b). The zinc repository of Cupriavidus metallidurans. Metallomics 6 2157–2165. 10.1039/C4MT00171K 25315396
Herzberg M., Schüttau M., Reimers M., Große C., Hans-Günther-Schlegel H.-G.-S., Nies D. H., (2015). Synthesis of nickel–iron hydrogenase in Cupriavidus metallidurans is controlled by metal-dependent silencing and un-silencing of genomic islands. Metallomics 7 632–649. 10.1039/C4MT00297K 25720835
Hobman J. L., Wilkie J., Brown N. L., (2005). A design for life: prokaryotic metal-binding MerR family regulators. Biometals 18 429–436. 10.1007/s10534-005-3717-7 16158235
Huerta-Cepas J., Szklarczyk D., Forslund K., Cook H., Heller D., Walter M. C., et al. (2016). EGGNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44 D286–D293. 10.1093/nar/gkv1248 26582926
Ibáñez M. M., Checa S. K., Soncini F. C., (2015). A single serine residue determines selectivity to monovalent metal ions in metalloregulators of the MerR family. J. Bacteriol. 197 1606–1613. 10.1128/JB.02565-14 25691529
Janssen P. J., Van Houdt R., Moors H., Monsieurs P., Morin N., Michaux A., et al. (2010). The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS One 5:e10433. 10.1371/journal.pone.0010433 20463976
Jian X., Wasinger E. C., Lockard J. V., Chen L. X., He C., (2009). Highly sensitive and selective gold(I) recognition by a metalloregulator in Ralstonia metallidurans. J. Am. Chem. Soc. 131 10869–10871. 10.1021/ja904279n 19606897
Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., et al. (2012). Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28 1647–1649. 10.1093/bioinformatics/bts199 22543367
Kim E.-H., Nies D. H., McEvoy M. M., Rensing C., (2011). Switch or funnel: how RND-type transport systems control periplasmic metal homeostasis. J. Bacteriol. 193 2381–2387. 10.1128/JB.01323-10 21398536
Konstantinidis K. T., Tiedje J. M., (2005). Genomic insights that advance the species definition for prokaryotes. Proc. Natl. Acad. Sci. U.S.A. 102 2567–2572. 10.1073/pnas.0409727102 15701695
Krogh A., Larsson B., von Heijne G., Sonnhammer E. L. L., (2001). Predicting transmembrane protein topology with a hidden markov model: application to complete genomes11Edited by F. Cohen. J. Mol. Biol. 305 567–580. 10.1006/jmbi.2000.4315 11152613
Lagesen K., Hallin P., Rødland E. A., Stærfeldt H.-H., Rognes T., Ussery D. W., (2007). RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35 3100–3108. 10.1093/nar/gkm160 17452365
Lee S., (2002). Functional analysis of the Escherichia coli zinc transporter ZitB. FEMS Microbiol. Lett. 215 273–278. 10.1111/j.1574-6968.2002.tb11402.x 12399046
Lee S., Khanal A., Cho A.-H., Lee H., Kang M.-S., Unno T., et al. (2019). Cupriavidus sp. strain Ni-2 resistant to high concentration of nickel and its genes responsible for the tolerance by genome comparison. Arch. Microbiol. 201 1323–1331. 10.1007/s00203-019-01700-5 31297579
Legatzki A., Grass G., Anton A., Rensing C., Nies D. H., (2003). Interplay of the Czc system and two P-type ATPases in conferring metal resistance to Ralstonia metallidurans. J. Bacteriol. 185 4354–4361. 10.1128/JB.185.15.4354 12867443
Long F., Su C.-C., Lei H.-T., Bolla J. R., Do S. V., Yu E. W., (2012). Structure and mechanism of the tripartite CusCBA heavy-metal efflux complex. Philos. Trans. R. Soc. B Biol. Sci. 367 1047–1058. 10.1098/rstb.2011.0203 22411977
Lowe T. M., Eddy S. R., (1997). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25 0955–0964. 10.1093/nar/25.5.0955 9023104
Lu M., Fu D., (2007). Structure of the Zinc transporter YiiP. Science 317 1746–1748. 10.1126/science.1143748 17717154
Maguire M. E., (2006). Magnesium transporters: properties, regulation and structure. Front. Biosci. 11 3149–3163. 16720382
Makarova K., Wolf Y., Koonin E., (2015). Archaeal clusters of orthologous genes (arCOGs): an update and application for analysis of shared features between Thermococcales, Methanococcales, and Methanobacteriales. Life 5 818–840. 10.3390/life5010818 25764277
Mascher T., (2013). Signaling diversity and evolution of extracytoplasmic function (ECF) σ factors. Curr. Opin. Microbiol. 16 148–155. 10.1016/j.mib.2013.02.001 23466210
Mergeay M., (2015). “The history of Cupriavidus metallidurans strains isolated from anthropogenic environments,” in Metal Response in Cupriavidus metallidurans: Volume I: From Habitats to Genes and Proteins, eds Mergeay M., Van Houdt R., (Cham: Springer International Publishing), 1–19. 10.1007/978-3-319-20594-6_1
Mergeay M., Houba C., Gerits J., (1978). Extrachromosomal inheritance controlling resistance to cadmium, cobalt, copper and zinc ions: evidence from curing in a Pseudomonas [proceedings]. Arch. Int. Physiol. Biochim. 86 440–442.
Mergeay M., Monchy S., Vallaeys T., Auquier V., Benotmane A., Bertin P., et al. (2003). Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol. Rev. 27 385–410. 10.1016/s0168-6445(03)00045-7 12829276
Mergeay M., Nies L. D., Schlegel H. G., Gerits J., Charles P., Gijsegem F. V. A. N., (1985). Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J. Bacteriol. 162 328–334. 10.1128/jb.162.1.328-334.1985 3884593
Millacura F., Janssen P., Monsieurs P., Janssen A., Provoost A., Van Houdt R., et al. (2018). Unintentional genomic changes endow Cupriavidus metallidurans with an augmented heavy-metal resistance. Genes 9:551. 10.3390/genes9110551 30428624
Missiakas D., Raina S., (1998). The extracytoplasmic function sigma factors: role and regulation. Mol. Microbiol. 28 1059–1066. 10.1046/j.1365-2958.1998.00865.x 9680198
Molina-Henares A. J., Godoy P., Duque E., Ramos J. L., (2009). A general profile for the MerR family of transcriptional regulators constructed using the semi-automated provalidator tool. Environ. Microbiol. Rep. 1 518–523. 10.1111/j.1758-2229.2009.00067.x 23765930
Monchy S., Benotmane M. A., Janssen P., Vallaeys T., Taghavi S., van der Lelie D., et al. (2007). Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals. J. Bacteriol. 189 7417–7425. 10.1128/jb.00375-07 17675385
Monsieurs P., Mijnendonckx K., Provoost A., Venkateswaran K., Ott C. M., Leys N., et al. (2014). Genome sequences of Cupriavidus metallidurans strains NA1, NA4, and NE12, isolated from space equipment. Genome Announc. 2:e00719-14. 10.1128/genomeA.00719-14 25059868
Monsieurs P., Provoost A., Mijnendonckx K., Leys N., Gaudreau C., Van Houdt R., (2013). Genome sequence of Cupriavidus metallidurans strain H1130, isolated from an invasive human infection. Genome Announc. 1:e01051-13. 10.1128/genomeA.01051-13 24336383
Montanini B., Blaudez D., Jeandroz S., Sanders D., Chalot M., (2007). Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity. BMC Genomics 8:107. 10.1186/1471-2164-8-107 17448255
Munkelt D., Grass G., Nies D. H., (2004). The chromosomally encoded cation diffusion facilitator proteins DmeF and FieF from Wautersia metallidurans CH34 are transporters of broad metal specificity Doreen. J. Bacteriol. 186 8036–8043. 10.1128/JB.186.23.8036
Nawrocki E. P., Burge S. W., Bateman A., Daub J., Eberhardt R. Y., Eddy S. R., et al. (2015). Rfam: updates to the RNA families database. Nucleic Acids Res. 43 D130–D137. 10.1093/nar/gku1063 25392425
Nies A., Nies D. H., Silver S., (1989). Cloning and expression of plasmid genes encoding resistances to chromate and cobalt in Alcaligenes eutrophus. J. Bacteriol. 171 5065–5070. 10.1128/jb.171.9.5065-5070.1989 2549011
Nies D., Mergeay M., Friedrich B., Schlegel H. G., (1987). Cloning of plasmid genes encoding resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus CH34. J. Bacteriol. 169 4865–4868. 10.1128/jb.169.10.4865-4868.1987 2820947
Nies D. H., (1992). CzcR and CzcD, gene products affecting regulation of resistance to cobalt, zinc, and cadmium (czc system) in Alcaligenes eutrophus. J. Bacteriol. 174 8102–8110. 10.1128/jb.174.24.8102-8110.1992 1459958
Nies D. H., (1995). The cobalt, zinc, and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cation-proton antiporter in Escherichia coli. J. Bacteriol. 177 2707–2712. 10.1128/jb.177.10.2707-2712.1995 7751279
Nies D. H., (1999). Microbial heavy-metal resistance. Appl. Microbiol. Biotechnol. 51 730–750. 10.1007/s002530051457 10422221
Nies D. H., (2003). Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. 27 313–339. 10.1016/s0168-6445(03)00048-2 12829273
Nies D. H., (2016). The biological chemistry of the transition metal “transportome” of Cupriavidus metallidurans. Metallomics 8 481–507. 10.1039/C5MT00320B 27065183
Nies D. H., Rehbein G., Hoffmann T., Baumann C., Grosse C., (2006). Paralogs of genes encoding metal resistance proteins in Cupriavidus metallidurans strain CH34. J. Mol. Microbiol. Biotechnol. 11 82–93. 10.1159/000092820 16825791
Nikaido H., (2018). RND transporters in the living world. Res. Microbiol. 169 363–371. 10.1016/j.resmic.2018.03.001 29577985
Okkeri J., Haltia T., (2006). The metal-binding sites of the zinc-transporting P-type ATPase of Escherichia coli. Lys693 and Asp714 in the seventh and eighth transmembrane segments of ZntA contribute to the coupling of metal binding and ATPase activity. Biochim. Biophys. Acta Bioenerg. 1757 1485–1495. 10.1016/j.bbabio.2006.06.008 16890908
Ondov B. D., Treangen T. J., Melsted P., Mallonee A. B., Bergman N. H., Koren S., et al. (2016). Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 17:132. 10.1186/s13059-016-0997-x 27323842
Overbeek R., Olson R., Pusch G. D., Olsen G. J., Davis J. J., Disz T., et al. (2014). The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res. 42 D206–D214. 10.1093/nar/gkt1226 24293654
Paulsen I. T., Saier M. H., (1997). A novel family of ubiquitous heavy metal ion transport proteins. J. Membr. Biol. 156 99–103. 10.1007/s002329900192 9075641
Petersen T. N., Brunak S., von Heijne G., Nielsen H., (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8 785–786. 10.1038/nmeth.1701 21959131
Raimunda D., González-Guerrero M., Leeber B. W., Argüello J. M., (2011). The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function. Biometals 24 467–475. 10.1007/s10534-010-9404-3 21210186
Rea M. A., Zammit C. M., Reith F., (2016). Bacterial biofilms on gold grains—implications for geomicrobial transformations of gold. FEMS Microbiol. Ecol. 92:fiw082. 10.1093/femsec/fiw082 27098381
Reith F., Etschmann B., Grosse C., Moors H., Benotmane M. A., Monsieurs P., et al. (2009). Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans. Proc. Natl. Acad. Sci. U.S.A. 106 17757–17762. 10.1073/pnas.0904583106 19815503
Reith F., Lengke M. F., Falconer D., Craw D., Southam G., (2007). The geomicrobiology of gold. ISME J. 1 567–584. 10.1038/ismej.2007.75 18043665
Rensing C., Fan B., Sharma R., Mitra B., Rosen B. P., (2000). CopA: an Escherichia coli Cu(I)-translocating P-type ATPase. Proc. Natl. Acad. Sci. U.S.A. 97 652–656. 10.1073/pnas.97.2.652 10639134
Rensing C., Mitra B., Rosen B. P., (1997). The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proc. Natl. Acad. Sci. U.S.A. 94 14326–14331. 10.1073/pnas.94.26.14326 9405611
Rojas L. A., Yáñez C., González M., Lobos S., Smalla K., Seeger M., (2014). Characterization of the metabolically modified heavy metal-resistant Cupriavidus metallidurans strain MSR33 generated for mercury bioremediation. PLoS One 6:e17555. 10.1371/journal.pone.0017555 21423734
Scherer J., Nies D. H., (2009). CzcP is a novel efflux system contributing to transition metal resistance in Cupriavidus metallidurans CH34. Mol. Microbiol. 73 601–621. 10.1111/j.1365-2958.2009.06792.x 19602147
Silver S., Nucifora G., Phung L. T., (1993). Human Menkes X-chromosome disease and the staphylococcal cadmium-resistance ATPase: a remarkable similarity in protein sequences. Mol. Microbiol. 10 7–12. 10.1111/j.1365-2958.1993.tb00898.x 7968520
Stoyanov J. V., Brown N. L., (2003). The Escherichia coli copper-responsive copA promoter is activated by gold. J. Biol. Chem. 278 1407–1410. 10.1074/jbc.C200580200 12446701
Ta C., Reith F., Brugger J., Pring A., Lenehan C. E., (2014). Analysis of gold(I/III)-complexes by HPLC-ICP-MS demonstrates gold(III) stability in surface waters. Environ. Sci. Technol. 48 5737–5744. 10.1021/es404919a 24779406
Taghavi S., Lesaulnier C., Monchy S., Wattiez R., Mergeay M., van der Lelie D., (2009). Lead(II) resistance in Cupriavidus metallidurans CH34: interplay between plasmid and chromosomally-located functions. Antonie Van Leeuwenhoek 96 171–182. 10.1007/s10482-008-9289-0 18953667
Tatusov R. L., (2001). The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 29 22–28. 10.1093/nar/29.1.22 11125040
Tottey S., Harvie D. R., Robinson N. J., (2005). Understanding how cells allocate metals using metal sensors and metallochaperones. Acc. Chem. Res. 38 775–783. 10.1021/ar0300118 16231873
Tseng T. T., Gratwick K. S., Kollman J., Park D., Nies D. H., Goffeau A., et al. (1999). The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J. Mol. Microbiol. Biotechnol. 1 107–125. 10941792
Van Houdt R., Monchy S., Leys N., Mergeay M., (2009). New mobile genetic elements in Cupriavidus metallidurans CH34, their possible roles and occurrence in other bacteria. Antonie Van Leeuwenhoek 96 205–226. 10.1007/s10482-009-9345-4 19390985
Van Houdt R., Monsieurs P., Mijnendonckx K., Provoost A., Janssen A., Mergeay M., et al. (2012). Variation in genomic islands contribute to genome plasticity in Cupriavidus metallidurans. BMC Genomics 13:111. 10.1186/1471-2164-13-111 22443515
Van Houdt R., Provoost A., Van Assche A., Leys N., Lievens B., Mijnendonckx K., et al. (2018). Cupriavidus metallidurans strains with different mobilomes and from distinct environments have comparable phenomes. Genes 9:E507. 10.3390/genes9100507 30340417
Vandamme P., Coenye T., (2004). Taxonomy of the genus Cupriavidus: a tale of lost and found. Int. J. Syst. Evol. Microbiol. 54 2285–2289. 10.1099/ijs.0.63247-0 15545472
Wang K., Sitsel O., Meloni G., Autzen H. E., Andersson M., Klymchuk T., et al. (2014). Structure and mechanism of Zn2+-transporting P-type ATPases. Nature 514 518–522. 10.1038/nature13618 25132545
Wiesemann N., Bütof L., Herzberg M., Hause G., Berthold L., Etschmann B., et al. (2017). Synergistic toxicity of copper and gold compounds in Cupriavidus metallidurans. Appl. Environ. Microbiol. 83:e01679-17. 10.1128/AEM.01679-17 28939602
Wiesemann N., Mohr J., Grosse C., Herzberg M., Hause G., Reith F., et al. (2013). Influence of copper resistance determinants on gold transformation by Cupriavidus metallidurans strain CH34. J. Bacteriol. 195 2298–2308. 10.1128/JB.01951-12 23475973
Zammit C. M., Weiland F., Brugger J., Wade B., Winderbaum L. J., Nies D. H., et al. (2016). Proteomic responses to gold(III)-toxicity in the bacterium Cupriavidus metallidurans CH34. Metallomics 8 1204–1216. 10.1039/C6MT00142D 27757465
Zhou Y., Liang Y., Lynch K. H., Dennis J. J., Wishart D. S., (2011). PHAST: a fast phage search tool. Nucleic Acids Res. 39 W347–W352. 10.1093/nar/gkr485 21672955