Article (Scientific journals)
A generalization of Bohr–Mollerup’s theorem for higher order convex functions: a tutorial
Marichal, Jean-Luc; Zenaïdi, Naïm
2024In Aequationes Mathematicae, 98 (2), p. 455 - 481
Peer Reviewed verified by ORBi
 

Files


Full Text
AGeneralizationOfBohrMollerupTutorial.pdf
Publisher postprint (408.23 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
26A51; 33B15; 33B20; 39A06; 39B22; Binet’s function; Bohr–Mollerup’s theorem; Difference equation; Euler product form; Euler’s constant; Gamma and polygamma functions; Gauss’ limit; Gauss’ multiplication formula; Higher order convexity; Principal indefinite sum; Raabe’s formula; Stirling’s formula; Mathematics (all); Discrete Mathematics and Combinatorics; Applied Mathematics
Abstract :
[en] In its additive version, Bohr–Mollerup’s remarkable theorem states that the unique (up to an additive constant) convex solution f(x) to the equation Δf(x)=lnx on the open half-line (0,∞) is the log-gamma function f(x)=lnΓ(x), where Δ denotes the classical difference operator and Γ(x) denotes the Euler gamma function. In a recently published open access book, the authors provided and illustrated a far-reaching generalization of Bohr–Mollerup’s theorem by considering the functional equation Δf(x)=g(x), where g can be chosen from a wide and rich class of functions that have convexity or concavity properties of any order. They also showed that the solutions f(x) arising from this generalization satisfy counterparts of many properties of the log-gamma function (or equivalently, the gamma function), including analogues of Bohr–Mollerup’s theorem itself, Burnside’s formula, Euler’s infinite product, Euler’s reflection formula, Gauss’ limit, Gauss’ multiplication formula, Gautschi’s inequality, Legendre’s duplication formula, Raabe’s formula, Stirling’s formula, Wallis’s product formula, Weierstrass’ infinite product, and Wendel’s inequality for the gamma function. In this paper, we review the main results of this new and intriguing theory and provide an illustrative application.
Disciplines :
Mathematics
Author, co-author :
Marichal, Jean-Luc;  Department of Mathematics, University of Luxembourg, Esch-sur-Alzette, Luxembourg
Zenaïdi, Naïm  ;  Université de Liège - ULiège > Département de mathématique
Language :
English
Title :
A generalization of Bohr–Mollerup’s theorem for higher order convex functions: a tutorial
Publication date :
April 2024
Journal title :
Aequationes Mathematicae
ISSN :
0001-9054
eISSN :
1420-8903
Publisher :
Birkhauser
Volume :
98
Issue :
2
Pages :
455 - 481
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 06 January 2026

Statistics


Number of views
33 (1 by ULiège)
Number of downloads
15 (0 by ULiège)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenCitations
 
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBi