Ecology, Evolution, Behavior and Systematics; Earth-Surface Processes
Abstract :
[en] Coral reefs are under threat due to climate change and ocean acidification. However, large uncertainties remain concerning future carbon dioxide emissions, climate change and the associated impacts on coral reefs. While most previous studies have used climate model outputs to compute future coral reef carbonate production, we use a coral reef carbonate production module embedded in a global carbon-climate model. This enables the simulation of the response of coral reefs to projected changes in physical and chemical conditions at finer temporal resolution. The use of a fast-intermediate complexity model also permits the simulation of a large range of possible futures by considering different greenhouse gas concentration scenarios (Shared Socioeconomic Pathways (SSPs)) and different climate sensitivities (hence different levels of warming for a given level of acidification), as well as the possibility of corals adapting their thermal bleaching thresholds. We show that without thermal adaptation, global coral reef carbonate production decreases to less than 25 % of historical values in most scenarios over the 21st century, with limited further declines between 2100 and 2300 irrespective of the climate sensitivity. With thermal adaptation, there is far greater scenario variability in projections of reef carbonate production. Under high-emission scenarios the rate of 21st century declines is attenuated, with some global carbonate production declines delayed until the 22nd century. Under high-mitigation scenarios, however, global coral reef carbonate production can recover in the 21st and 22nd centuries and thereafter persist at 50 %-90 % of historical values, provided that the climate sensitivity is moderate.
Research Center/Unit :
SPHERES - ULiège
Disciplines :
Earth sciences & physical geography
Author, co-author :
Bouttes, Nathaelle ; Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
Kwiatkowski, Lester ; LOCEAN Laboratory, Sorbonne Université-CNRS-IRD-MNHN, Paris, France
Berger, Manon ; Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
Brovkin, Victor ; Max Planck Institute for Meteorology, Hamburg, Germany ; CEN, University of Hamburg, Hamburg, Germany
Munhoven, Guy ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Language :
English
Title :
Projections of coral reef carbonate production from a global climate-coral reef coupled model
H2020 - 951288 - Q-ARCTIC - Quantify disturbance impacts on feedbacks between Arctic permafrost and global climate HE - 101137673 - TipESM - Exploring Tipping Points and Their Impacts Using Earth System Models
Name of the research project :
SEdiment REsponse to NATural and Anthropogenic carbon cycle perturbations — SERENATA The Interglacial CO2 mystery — TICMY
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique ERC - European Research Council ANR - Agence Nationale de la Recherche European Union
Funding number :
CDR J.0123.19; 951288; 101137673; 273305
Funding text :
Financial support for this work was provided by the Belgian Fund for Scientific Research – F.R.S.-FNRS (project SERENATA, grant no. CDR J.0123.19). Guy Munhoven is a research associate with the Belgian Fund for Scientific Research – F.R.S.-FNRS. Victor Brovkin acknowledges funding by the European Research Council (ERC) as part of the Q-Arctic project (grant agreement no. 951288). Lester Kwiatkowski acknowledges funding by the European Research Council (ERC) as part of the TipESM project (grant agreement no. 101137673) and the ENS Chanel research chair. The authors acknowledge the ANR – FRANCE (French National Research Agency) for its financial support of the TICMY project no. 273305.
Albright, R., Caldeira, L., Hosfelt, J., Kwiatkowski, L., Maclaren, J. K., Mason, B. M., Nebuchina, Y., Ninokawa, A., Pongratz, J., Ricke, K. L., Rivlin, T., Schneider, K., Sesboüé, M., Shamberger, K., Silverman, J., Wolfe, K., Zhu, K., and Caldeira, K.: Reversal of ocean acidification enhances net coral reef calcification, Nature, 531, 362–365, https://doi.org/10.1038/nature17155, 2016.
Albright, R., Takeshita, Y., Koweek, D., Ninokawa, A., Wolfe, K., Rivlin, T., Nebuchina, Y., Young, J., and Caldeira, K.: Carbon dioxide addition to coral reef waters suppresses net community calcification, Nature, 555, 516–519, https://doi.org/10.1038/nature25968, 2018.
Bouttes, N.: Coral reef carbonate production simulations with iLOVECLIM-iCORAL, Zenodo [data set], https://doi.org/10.5281/zenodo.12958336, 2024.
Bouttes, N., Roche, D. M., Mariotti, V., and Bopp, L.: Including an ocean carbon cycle model into iLOVECLIM (v1.0), Geosci. Model Dev., 8, 1563–1576, https://doi.org/10.5194/gmd-8-1563-2015, 2015.
Bouttes, N., Kwiatkowski, L., Berger, M., Brovkin, V., and Muhnoven, G.: iCORAL code (1.0), Zenodo [code], https://doi.org/10.5281/zenodo.7985881, 2023.
Bouttes, N., Kwiatkowski, L., Berger, M., Brovkin, V., and Munhoven, G.: Implementing the iCORAL (version 1.0) coral reef CaCO3 production module in the iLOVECLIM climate model, Geosci. Model Dev., 17, 6513–6528, https://doi.org/10.5194/gmd-17-6513-2024, 2024.
Brown, B. E.: Coral bleaching: causes and consequences, Coral Reefs, 16, S129–S138, https://doi.org/10.1007/s003380050249, 1997.
Buddemeier, R. W., Jokiel, P. L., Zimmerman, K. M., Lane, D. R., Carey, J. M., Bohling, G. C., and Martinich, J. A.: A modeling tool to evaluate regional coral reef responses to changes in climate and ocean chemistry, Limnol. Oceanogr.-Meth., 6, 395–411, https://doi.org/10.4319/lom.2008.6.395, 2008.
Buddemeier, R. W., Lane, D. R., and Martinich, J. A.: Modeling regional coral reef responses to global warming and changes in ocean chemistry: Caribbean case study, 109, 375–397, Climatic Change, https://doi.org/10.1007/s10584-011-0022-z, 2011.
Chan, N. C. S. and Connolly, S. R.: Sensitivity of coral calcification to ocean acidification: a meta-analysis, Glob. Change Biol., 19, 282–290, https://doi.org/10.1111/gcb.12011, 2013.
Chou, C. and Neelin, J. D.: Linearization of a long-wave radiation scheme for intermediate tropical atmospheric model, J. Geophys. Res., 101, 15129–15145, https://doi.org/10.1029/96JD01015, 1996.
Comeau, S., Cornwall, C. E., DeCarlo, T. M., Krieger, E., and Mc-Culloch, M. T.: Similar controls on calcification under ocean acidification across unrelated coral reef taxa, Glob. Change Biol., 24, 4857–4868, https://doi.org/10.1111/gcb.14379, 2018.
Cooley, S., Schoeman, D., Bopp, L., Boyd, P., Donner, S., Ghebrehiwet, D. Y., Ito, S.-I., Kiessling, W., Martinetto, P., Ojea, E., Racault, M.-F., Rost, B., and Skern-Mauritzen, M.: Ocean and Coastal Ecosystems and their Services. In: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Pörtner, H.-O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., and Rama, B., Cambridge University Press, Cambridge, UK and New York, NY, USA, 379–550, https://doi.org/10.1017/9781009325844.005, 2022.
Copper, P.: Ancient reef ecosystem expansion and collapse, Coral Reefs, 13, 3–11, https://doi.org/10.1007/BF00426428, 1994.
Cornwall, C. E., Comeau, S., Kornder, N. A., and Lowe, R. J.: Global declines in coral reef calcium carbonate production under ocean acidification and warming, 118, e2015265118, https://doi.org/10.1073/pnas.2015265118, 2021.
Cornwall, C. E., Comeau, S., Donner, S. D., Perry, C., Dunne, J., van Hooidonk, R., Ryan, J. S., and Logan, C. A.: Coral adaptive capacity insufficient to halt global transition of coral reefs into net erosion under climate change, Glob. Chang Biol., 29, 3010–3018, https://doi.org/10.1111/gcb.16647, 2023.
Couce, E., Ridgwell, A., and Hendy, E. J.: Future habitat suitability for coral reef ecosystems under global warming and ocean acidification, Glob. Change Biol., 19, 3592–3606, https://doi.org/10.1111/gcb.12335, 2013.
Crossland, C. J., Hatcher, B. G., and Smith, S. V.: Role of coral reefs in global ocean production, Coral Reefs, 10, 55–64, https://doi.org/10.1007/BF00571824, 1991.
DeCarlo, T. M.: Treating coral bleaching as weather: a framework to validate and optimize prediction skill, PeerJ, 8, e9449, https://doi.org/10.7717/peerj.9449, 2020.
DeCarlo, T. M., Harrison, H. B., Gajdzik, L., Alaguarda, D., Rodolfo-Metalpa, R., D’Olivo, J., Liu, G., Patalwala, D., and Mc-Culloch, M. T.: Acclimatization of massive reef-building corals to consecutive heatwaves, Proc. R. Soc. B, 286, 20190235, https://doi.org/10.1098/rspb.2019.0235, 2019.
Donner, S.D., Skirving, W.J., Little, C.M., Oppenheimer, M., and Hoegh-Guldberg, O.: Global assessment of coral bleaching and required rates of adaptation under climate change, Glob. Chang Biol., 11, 2251–2265, https://doi.org/10.1111/j.13652486.2005.01073.x, 2005.
Dove, S. G., Kline, D. I., Pantos, O., Angly, F. E., Tyson, G. W., and Hoegh-Guldberg, O.: Future reef decalcification under a business-as-usual CO2 emission scenario, P. Natl. Acad. Sci. USA, 110, 15342–15347, https://doi.org/10.1073/pnas.1302701110, 2013.
Evenhuis, C., Lenton, A., Cantin, N. E., and Lough, J. M.: Modelling coral calcification accounting for the impacts of coral bleaching and ocean acidification, Biogeosciences, 12, 2607–2630, https://doi.org/10.5194/bg-12-2607-2015, 2015.
Eyre, B. D., Cyronak, T., Drupp, P., De Carlo, E. H., Sachs, J. P., and Andersson, A. J.: Coral reefs will transition to net dissolving before end of century, Science, 359, 908–911, https://doi.org/10.1126/science.aao1118, 2018.
Forster, P., Storelvmo, T., Armour, K., Collins, W., Dufresne, J.L., Frame, D., Lunt, D. J., Mauritsen, T., Palmer, M. D., Watanabe, M., Wild, M., and Zhang, H.: The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 923–1054, https://doi.org/10.1017/9781009157896.009, 2021.
Forster, P. M., Maycock, A. C., McKenna, C. M., and Smith, C. J.: Latest climate models confirm need for urgent mitigation, Nat. Clim. Change, 10, 7–10, https://doi.org/10.1038/s41558-019-0660-0, 2020.
Frieler, K., Meinshausen, M., Golly, A., Mengel, M., Lebek, K., Donner, S. D., and Hoegh-Guldberg, O.: Limiting global warming to 2 °C is unlikely to save most coral reefs, Nat. Clim. Change, 3, 165–170, https://doi.org/10.1038/nclimate1674, 2012.
Frölicher, T. L., Fischer, E. M., and Gruber, N.: Marine heatwaves under global warming, Nature, 560, 360–364, https://doi.org/10.1038/s41586-018-0383-9, 2018.
Goosse, H., Brovkin, V., Fichefet, T., Haarsma, R., Huybrechts, P., Jongma, J., Mouchet, A., Selten, F., Barriat, P.-Y., Campin, J.M., Deleersnijder, E., Driesschaert, E., Goelzer, H., Janssens, I., Loutre, M.-F., Morales Maqueda, M. A., Opsteegh, T., Mathieu, P.-P., Munhoven, G., Pettersson, E. J., Renssen, H., Roche, D. M., Schaeffer, M., Tartinville, B., Timmermann, A., and Weber, S. L.: Description of the Earth system model of intermediate complexity LOVECLIM version 1.2, Geosci. Model Dev., 3, 603–633, https://doi.org/10.5194/gmd-3-603-2010, 2010.
Gregory, J. M., Ingram, W. J., Palmer, M. A., Jones, G. S., Stott, P. A., Thorpe, R. B., Lowe, J. A., Johns, T. C., and Williams, K. D.: A new method for diagnosing radiative forcing and climate sensitivity, Geophys. Res. Lett., 31, L03205, https://doi.org/10.1029/2003GL018747, 2004.
Hoegh-Guldberg, O.: Climate change, coral bleaching and the future of the world’s coral reefs, Mar. Freshwater Res., 50, 839–866, https://doi.org/10.1071/MF99078, 1999.
Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W., and Dove, S.: Coral Reef Ecosystems under Climate Change and Ocean Acidification, Front. Mar. Sci., 4, 158, https://doi.org/10.3389/fmars.2017.00158, 2017.
Jokiel, P. L.: Predicting the impact of ocean acidification on coral reefs: evaluating the assumptions involved, ICES J. Mar. Sci., 73, 550–557, https://doi.org/10.1093/icesjms/fsv091, 2016.
Klein, S. G., Roch, C. and Duarte, C. M.: Systematic review of the uncertainty of coral reef futures under climate change, Nat. Commun., 15, 2224, https://doi.org/10.1038/s41467-024-46255-2, 2024
Klepac, C. N., Eaton, K. R., Petrik, C. G., Arick, L. N., Hall, E. R., and Muller, E. M.: Symbiont composition and coral genotype determines massive coral species performance under end-of-century climate scenarios, Front. Mar. Sci., 10, 1026426, https://doi.org/10.3389/fmars.2023.1026426, 2023.
Kleypas, J. A.: A diagnostic model for predicting global coral reef distribution, in: Recent Advances in Marine Science and Technology’94”, edited by: Bellwood, O., Choat, H., and Saxena, N., PACON International and James Cook University, 211–220, https://nla.gov.au/nla.cat-vn2172300, 1995.
Kleypas, J. A.: Modeled estimates of global reef habitat and carbonate production since the Last Glacial Maximum, Paleoceanography, 12, 533–545, https://doi.org/10.1029/97PA01134, 1997.
Kleypas, J. A., Buddemeier, R. W., Archer, D., Gattuso, J.-P., Langdon, C., and Opdyke, B. N.: Geochemical consequences of increased atmospheric carbon dioxide on coral reefs, Science, 284, 118–120, https://doi.org/10.1126/science.284.5411.118, 1999.
Kroeker, K. J., Kordas, R. L., Crim, R. N., and Singh, G. G.: Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms, Ecol. Lett., 13, 1419–1434, https://doi.org/10.1111/j.1461-0248.2010.01518.x, 2010.
Kwiatkowski, L., Torres, O., Bopp, L., Aumont, O., Chamberlain, M., Christian, J. R., Dunne, J. P., Gehlen, M., Ilyina, T., John, J. G., Lenton, A., Li, H., Lovenduski, N. S., Orr, J. C., Palmieri, J., Santana-Falcón, Y., Schwinger, J., Séférian, R., Stock, C. A., Tagliabue, A., Takano, Y., Tjiputra, J., Toyama, K., Tsujino, H., Watanabe, M., Yamamoto, A., Yool, A., and Ziehn, T.: Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections, Biogeosciences, 17, 3439–3470, https://doi.org/10.5194/bg-17-3439-2020, 2020.
Langdon, C., and Atkinson, M. J.: Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment, J. Geophys. Res., 110, C09S07, https://doi.org/10.1029/2004JC002576, 2005.
Leung, J. Y. S., Zhang, S., and Connell, S. D.: Is Ocean Acidification Really a Threat to Marine Calcifiers? A Systematic Review and Meta-Analysis of 980+ Studies Spanning Two Decades, Small, 18, 2107407, https://doi.org/10.1002/smll.202107407, 2022.
Li, J., Knapp, D. E., Fabina, N. S., Kennedy, E. V., Larsen, K., Lyons, M. B., Murray, N. J., Phinn, S. R., Roelfsema, C. M., and Asner, G. P.: A global coral reef probability map generated using convolutional neural networks, Coral Reefs, 39, 1805–1815, https://doi.org/10.1007/s00338-020-02005-6, 2020.
Logan, C. A., Dunne, J. P., Ryan, J. S., Baskett, M. L., and Donner, S.: Quantifying global potential for coral evolutionary response to climate change, Nat. Clim. Chang., 11, 537–542, https://doi.org/10.1038/s41558-021-01037-2, 2021.
McClanahan, T. R., Darling, E. S., Maina, J. M., Muthiga, N. A., D’agata, S., Leblond, J., Arthur, R., Jupiter, S. D., Wilson, S. K., Mangubhai, S., Ussi, A. M., Guillaume, M. M. M., Humphries, A. T., Patankar, V., Shedrawi, G., Pagu, J., and Grimsditch, G.: Highly variable taxa-specific coral bleaching responses to thermal stresses, Mar. Ecol. Prog. Ser., 648, 135–151, https://doi.org/10.3354/meps13402, 2020.
Meehl, G. A., Senior, C. A., Eyring, V., Flato, G., Lamarque, J. F., Stouffer, R. J., Taylor, K. E., and Schlund, M.: Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models, Sci Adv., 6, eaba1981, https://doi.org/10.1126/sciadv.aba1981, 2020.
Meinshausen, M., Nicholls, Z. R. J., Lewis, J., Gidden, M. J., Vogel, E., Freund, M., Beyerle, U., Gessner, C., Nauels, A., Bauer, N., Canadell, J. G., Daniel, J. S., John, A., Krummel, P. B., Luderer, G., Meinshausen, N., Montzka, S. A., Rayner, P. J., Reimann, S., Smith, S. J., van den Berg, M., Velders, G. J. M., Vollmer, M. K., and Wang, R. H. J.: The shared socioeconomic pathway (SSP) greenhouse gas concentrations and their extensions to 2500, Geosci. Model Dev., 13, 3571–3605, https://doi.org/10.5194/gmd-13-3571-2020, 2020.
O’Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sander-son, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016.
Pandolfi, J. M., Connolly, S. R., Marshall, D. J., and Cohen, A. L.: Projecting Coral Reef Futures Under Global Warming and Ocean Acidification, Science, 333, 418-422, https://doi.org/10.1126/science.1204794, 2011.
Schönberg, C. H. L., Fang, J. K. H., Carreiro-Silva, M., Tribollet, A., and Wisshak, M.: Bioerosion: the other ocean acidification problem, ICES J. Mar. Sci., 74, 895–925, https://doi.org/10.1093/icesjms/fsw254, 2017.
Silverman, J., Lazar, B., Cao, L., Caldeira, K., and Erez, J.: Coral reefs may start dissolving when atmospheric CO2 doubles, Geophys. Res. Lett., 36, L05606, https://doi.org/10.1029/2008GL036282, 2009.
Smith, S.: Coral-reef area and the contributions of reefs to processes and resources of the world’s oceans, Nature, 273, 225–226, https://doi.org/10.1038/273225a0, 1978.
Spalding, M., Spalding, M. D., Ravilious, C., and Green, E. P.: World atlas of coral reefs, University of California Press, 2001.
Sully, S., Burkepile, D.E., Donovan, M.K., Hodgson, G., and van Woesik, R.: A global analysis of coral bleaching over the past two decades, Nat Commun. 10, 1264, https://doi.org/10.1038/s41467-019-09238-2, 2019.
Sully, S., Hodgson, G., and van Woesik, R.: Present and future bright and dark spots for coral reefs through climate change, Glob. Change Biol., 10, 1264, https://doi.org/10.1111/gcb.16083, 2022.
Timm, O. and Timmermann, A.: Simulation of the Last 21 000 Years Using Accelerated Transient Boundary Conditions, J. Climate, 20, 4377–4401, https://doi.org/10.1175/JCLI4237.1, 2007.
van Hooidonk, R., Maynard, J. A., Manzello, D., and Planes, S.: Opposite latitudinal gradients in projected ocean acidification and bleaching impacts on coral reefs, Glob. Change Biol., 20, 103–112, https://doi.org/10.1111/gcb.12394, 2014.
Vecsei, A.: A new estimate of global reefal carbonate production including the fore-reefs, Global Planet. Change, 43, 1–18, https://doi.org/10.1016/j.gloplacha.2003.12.002, 2004.
Wolff, N. H., Mumby, P. J., Devlin, M., and Anthony K. R. N.: Vulnerability of the Great Barrier Reef to climate change and local pressures, Glob. Change Biol., 24, 1978–1991, https://doi.org/10.1111/gcb.14043, 2018.