[en] This work reports a straightforward synthesis of macroporous polyHIPEs with antibacterial properties using (meth)acrylated derivatives of eugenol, thymol, soybean oil (AESO) and natural dyes. The approach relies on the intrinsic antibacterial activity expected from eugenol and thymol, together with the possible photoinduced antibacterial effects imparted by natural dyes. Such a strategy may provide porous bio-based materials in which both inherent and light-activated antibacterial mechanisms can be exploited. All polyHIPEs prepared from different dyes and monomers by emulsion templating process displayed comparable interconnected porous structures. The influence of dyes and monomer composition on thermal and mechanical properties was assessed using differential scanning calorimetry and dynamic mechanical analysis. Incorporation of natural dyes resulted in a decrease of the Young modulus and an increase of the glass transition temperature of the materials. The antibacterial properties of the photosensitive polyHIPEs containing natural dyes were compared with the pristine eugenol-, thymol- and AESO-based polyHIPEs, both under visible light exposure and in the dark. Despite the production of reactive oxygen species, irradiation of the photosensitive polyHIPEs associating natural dyes and essential oil monomers do not enhance antibacterial properties of the matrices. On the contrary, dye-free polyHIPEs based on eugenol or thymol showed strong inhibition of S. aureus adhesion and proliferation. These findings open new perspectives for the development of the next generation of antibacterial porous materials, with potential application in water depollution.
Disciplines :
Materials science & engineering Chemistry
Author, co-author :
Hayek, Hassan; University Paris-Est Créteil [UPEC] - CNRS - ICMPE - Thiais - France
Boucq, Pascal ; University of Liège [ULiège] - Complex and Entangled Systems from Atoms to Materials [CESAM] Research Unit - Center for Education and Research on Macromolecules [CERM] - Belgium
Andaloussi, Samir abbad; University Paris-Est Créteil [UPEC] - Laboratoire Eau, Environnement, SysTèmes Urbains [LEESU] - France
Kovačič, Sebastijan; University of Maribor - Faculty of Chemistry and Chemical Engineering - Slovenia ; National Institute of Chemistry - Ljubljana - Slovenia
Debuigne, Antoine ; University of Liège [ULiège] - Complex and Entangled Systems from Atoms to Materials [CESAM] Research Unit - Center for Education and Research on Macromolecules [CERM] - Belgium
Versace, Davy-Louis ; University Paris-Est Créteil [UPEC] - CNRS - ICMPE - Thiais - France
F.R.S.-FNRS - Fund for Scientific Research Ministère de l'Enseignement supérieur et de la Recherche Scientifique CNRS - Centre National de la Recherche Scientifique
Funding text :
This work was supported by the Ministere de l'Enseignement Sup\u00E9rieur et de la Recherche, the CNRS and the Universit\u00E9 Paris-Est Cr\u00E9teil (UPEC). A. Debuigne and P. Boucq are grateful to the F.R.S.-FNRS for financial support.
Wood, C.D., Tan, B., Trewin, A., Su, F., Rosseinsky, M.J., Bradshaw, D., Sun, Y., Zhou, L., Cooper, A.I., Microporous Organic Polymers for methane Storage. Adv. Mater. 20 (2008), 1916–1921, 10.1002/adma.200702397.
Ben, T., Ren, H., Ma, S., Cao, D., Lan, J., Jing, X., Wang, W., Xu, J., Deng, F., Simmons, J.M., Qiu, S., Zhu, G., Targeted Synthesis of a Porous Aromatic Framework with High Stability and Exceptionally High Surface Area. Angew. Chem. Int. Ed. 48 (2009), 9457–9460, 10.1002/anie.200904637.
Shi, Z., Zhou, Y., Yan, D., Preparation of Robust Poly(ε-caprolactone) Hollow Spheres with Controlled Biodegradability. Macromol. Rapid Commun. 27 (2006), 1265–1270, 10.1002/marc.200600307.
Chan-Thaw, C.E., Villa, A., Katekomol, P., Su, D., Thomas, A., Prati, L., Covalent Triazine Framework as Catalytic support for liquid phase Reaction. Nano Lett. 10 (2010), 537–541, 10.1021/nl904082k.
Du, N., Robertson, G.P., Song, J., Pinnau, I., Thomas, S., Guiver, M.D., Polymers of Intrinsic Microporosity Containing Trifluoromethyl and Phenylsulfone groups as Materials for Membrane Gas Separation. Macromolecules 41 (2008), 9656–9662, 10.1021/ma801858d.
Jackson, E.A., Hillmyer, M.A., Nanoporous Membranes Derived from Block Copolymers: from Drug delivery to Water Filtration. ACS Nano 4 (2010), 3548–3553, 10.1021/nn1014006.
Orellano, M.S., Sanz, O., Camarero-Espinosa, S., Beloqui, A., Calderón, M., Recent advances and Future Perspectives of Porous Materials for Biomedical applications. Nanomed. J. 17 (2022), 197–200, 10.2217/nnm-2021-0436.
Wu, P., Wei, L., Yao, R., Liu, B., Yang, S.-L., Qiao, L., Wang, X., Gong, W., Liu, Y., Cui, Y., Dong, J., Recent advances in Crystalline Porous Materials for Antibacterial applications. Chem. Asian J., 2, 2025, e202401961, 10.1002/asia.202401961.
Gokmen, M.T., Du Prez, F.E., Porous polymer particles—A comprehensive guide to synthesis, characterization, functionalization and applications. Prog. Polym. Sci. 37 (2012), 365–405, 10.1016/j.progpolymsci.2011.07.006.
Stucki, M., Loepfe, M., Stark, W.J., Porous Polymer Membranes by Hard Templating – a Review. Adv. Eng. Mater., 20, 2018, 1700611, 10.1002/adem.201700611.
Escalé, P., Rubatat, L., Billon, L., Save, M., Recent advances in honeycomb-structured porous polymer films prepared via breath figures. Eur. Polym. J. 48 (2012), 1001–1025, 10.1016/j.eurpolymj.2012.03.001.
Beiler, B., Vincze, Á., Svec, F., Sáfrány, Á., Poly(2-hydroxyethyl acrylate-co-ethyleneglycol dimethacrylate) monoliths synthesized by radiation polymerization in a mold. Polymer 48 (2007), 3033–3040, 10.1016/j.polymer.2007.04.002.
McKenzie, T.J., Ayres, N., Synthesis and applications of Elastomeric Polymerized High Internal phase Emulsions (PolyHIPEs). ACS Omega 8 (2023), 20178–20195, 10.1021/acsomega.3c01265.
Cameron, N.R., High internal phase emulsion templating as a route to well-defined porous polymers. Polymer 46 (2005), 1439–1449, 10.1016/j.polymer.2004.11.097.
Yüce, E., Mert, E.H., Krajnc, P., Parın, F.N., San, N., Kaya, D., Yıldırım, H., Photocatalytic activity of Titania/Polydicyclopentadiene PolyHIPE Composites. Macromol. Mater. Eng., 302, 2017, 1700091, 10.1002/mame.201700091.
Serrà, A., Artal, R., Pozo, M., Garcia-Amorós, J., Gómez, E., Simple Environmentally-Friendly Reduction of 4-Nitrophenol. Catalysts, 10, 2020, 458, 10.3390/catal10040458.
Šorm, D., Brus, J., Pintar, A., Sedláček, J., Kovačič, S., Hierarchically Porous Polyacetylene Networks: Adsorptive Photocatalysts for Efficient Bisphenol a Removal from Water. ACS Polym. Au 4 (2024), 420–427, 10.1021/acspolymersau.4c00032.
Kotnik, T., Žerjav, G., Pintar, A., Žagar, E., Kovačič, S., Highly Porous Poly(arylene cyano-vinylene) Beads Derived through the Knoevenagel Condensation of the Oil-in-Oil-in-Oil double Emulsion Templates. ACS Macro Lett. 10 (2021), 1248–1253, 10.1021/acsmacrolett.1c00457.
Elian, C., Méallet, R., Versace, D.-L., Photoactive Dye-Loaded Polymer Materials: a New cutting Edge for Antibacterial Photodynamic Therapy. Adv. Funct. Mater., 34, 2024, 2407228, 10.1002/adfm.202407228.
Tobin, J.M., McCabe, T.J.D., Prentice, A.W., Holzer, S., Lloyd, G.O., Paterson, M.J., Arrighi, V., Cormack, P.A.G., Vilela, F., Polymer-Supported Photosensitizers for Oxidative Organic Transformations in Flow and under Visible Light Irradiation. ACS Catal. 7 (2017), 4602–4612, 10.1021/acscatal.7b00888.
Santos, R.T., Santos, N.S., de Oliveira, M.A., de, F., Campeão, A.B., Mandu, M.A.L.G.M.R., Marques, M.R.C., da, L., Costa, C., Antimicrobial activity of silver composites obtained from crosslinked polystyrene with polyHIPE structures. Polímeros, 31, 2021, e2021030, 10.1590/0104-1428.20210005.
Tian, X., Ge, X., Guo, M., Ma, J., Meng, Z., Lu, P., An antimicrobial bio-based polymer foam from ZnO-stabilised pickering emulsion templated polymerisation. J. Mater. Sci. 56 (2021), 1643–1657, 10.1007/s10853-020-05354-3.
Sadeghi, S., Moghbeli, M.R., Synthesis and dispersion of colloidal silver nanoparticles on microcellular polyHIPE support. Colloids Surf A Physicochem Eng Asp 409 (2012), 42–51, 10.1016/j.colsurfa.2012.05.037.
Seeharaj, P., Eamsa-Ard, T., Thasirisap, E., Synthesis and Characterization of PolyHIPEs Composites with Silica and Iron Oxide Nanoparticles. Key Eng. Mater. 659 (2015), 505–510, 10.4028/www.scientific.net/KEM.659.505.
Mert, E.H., Yıldırım, H., Üzümcü, A.T., Kavas, H., Synthesis and characterization of magnetic polyHIPEs with humic acid surface modified magnetic iron oxide nanoparticles. React. Funct. Polym. 73 (2013), 175–181, 10.1016/j.reactfunctpolym.2012.09.005.
Yang, Y., Li, J., Dong, Y., Wang, J., Cao, L., Preparation of porous monoliths via CO2-in-water HIPEs template and the in situ growth of metal organic frameworks on it for multiple applications. Polym. Adv. Technol. 31 (2020), 1591–1601, 10.1002/pat.4888.
Bondarenko, O., Juganson, K., Ivask, A., Kasemets, K., Mortimer, M., Kahru, A., Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch. Toxicol. 87 (2013), 1181–1200, 10.1007/s00204-013-1079-4.
He, H., Zou, Z., Wang, B., Xu, G., Chen, C., Qin, X., Yu, C., Zhang, J., Copper Oxide Nanoparticles Induce Oxidative DNA damage and Cell Death via Copper Ion-Mediated P38 MAPK Activation in Vascular Endothelial Cells. IJN 15 (2020), 3291–3302, 10.2147/IJN.S241157.
Lacave, J.M., Vicario-Parés, U., Bilbao, E., Gilliland, D., Mura, F., Dini, L., Cajaraville, M.P., Orbea, A., Waterborne exposure of adult zebrafish to silver nanoparticles and to ionic silver results in differential silver accumulation and effects at cellular and molecular levels. Sci. Total Environ. 642 (2018), 1209–1220, 10.1016/j.scitotenv.2018.06.128.
Shi, H., Magaye, R., Castranova, V., Zhao, J., Titanium dioxide nanoparticles: a review of current toxicological data. Part Fiber Toxicol, 10, 2013, 15, 10.1186/1743-8977-10-15.
Wang, L.-S., Gopalakrishnan, S., Gupta, A., Banerjee, R., Lee, Y.-W., Rotello, V.M., Porous Polymerized High Internal phase Emulsions Prepared using Proteins and Essential oils for Antimicrobial applications. Langmuir 38 (2022), 11675–11682, 10.1021/acs.langmuir.2c01565.
Agrawal, M., Yadav, A., Takkar, S., Kulshreshtha, R., Nandan, B., Srivastava, R.K., Dual-functionalized Pickering HIPE templated poly(ɛ-caprolactone) scaffold for maxillofacial implants. Int. J. Pharm., 633, 2023, 122611, 10.1016/j.ijpharm.2023.122611.
Zou, S., Wei, Z., Hu, Y., Deng, Y., Tong, Z., Wang, C., Macroporous antibacterial hydrogels with tunable pore structures fabricated by using Pickering high internal phase emulsions as templates. Polym. Chem. 5 (2014), 4227–4234, 10.1039/C4PY00436A.
Hayek, H., Rouxhet, A., Abbad Andaloussi, S., Kovačič, S., Versace, D.-L., Debuigne, A., Quinizarin-based photoactive porous polymers from emulsion templates: Monoliths versus membranes in photobactericidal applications. Eur. Polym. J., 217, 2024, 113291, 10.1016/j.eurpolymj.2024.113291.
Kachur, K., Suntres, Z., The antibacterial properties of phenolic isomers, carvacrol and thymol. Crit. Rev. Food Sci. 60 (2020), 3042–3053, 10.1080/10408398.2019.1675585.
Marchese, A., Orhan, I.E., Daglia, M., Barbieri, R., Di Lorenzo, A., Nabavi, S.F., Gortzi, O., Izadi, M., Nabavi, S.M., Antibacterial and antifungal activities of thymol: a brief review of the literature. Food Chem. 210 (2016), 402–414, 10.1016/j.foodchem.2016.04.111.
Didry, N., Dubreuil, L., Pinkas, M., Activity of thymol, carvacrol, cinnamaldehyde and eugenol on oral bacteria. Pharm. Acta Helv. 69 (1994), 25–28, 10.1016/0031-6865(94)90027-2.
Burt, S., Essential oils: their antibacterial properties and potential applications in foods—a review. Int. J. Food Microbiol. 94 (2004), 223–253, 10.1016/j.ijfoodmicro.2004.03.022.
Kowalewska, A., Majewska-Smolarek, K., Eugenol-based Polymeric Materials—Antibacterial activity and applications. Antibiotics, 12, 2023, 1570, 10.3390/antibiotics12111570.
Breloy, L., Brezová, V., Barbierikova, Z., Ito, Y., Akimoto, J., Chiappone, A., Samir, A., Malval, J.-P., Versace, D.-L., Methacrylated Quinizarin Derivatives for Visible-Light Mediated Photopolymerization: Promising applications in 3D-printing Biosourced Materials under LED@405 nm. ACS Appl. Polym. Mater. 4 (2021), 210–228, 10.1021/acsapm.1c01210.
Condat, M., Mazeran, P.-E., Malval, J.-P., Lalevée, J., Morlet-Savary, F., Renard, E., Langlois, V., Andalloussi, S.A., Versace, D.-L., Photoinduced curcumin derivative-coatings with antibacterial properties. RSC Adv. 5 (2015), 85214–85224, 10.1039/C5RA19499G.
Sautrot-Ba, P., Brezová, V., Malval, J.-P., Chiappone, A., Breloy, L., Abbad-Andaloussi, S., Versace, D.-L., Purpurin derivatives as visible-light photosensitizers for 3D printing and valuable biological applications. Polym. Chem. 12 (2021), 2627–2642, 10.1039/D1PY00126D.
Breloy, L., Elian, C., Alphonse, V., Lajnef, S., Peyrot, F., Jacquemin, D., Pascal, S., Devernois, E., Coradin, T., Andaloussi, S.A., Versace, D.-L., Terpenes, natural dyes and photochemistry: toward the synthesis of photoactive bio-based materials with biocide properties. RSC Appl. Polym. 3 (2025), 222–237, 10.1039/D4LP00271G.
Molina-Gutiérrez, S., Manseri, A., Ladmiral, V., Bongiovanni, R., Caillol, S., Lacroix-Desmazes, P., Eugenol: a Promising Building Block for Synthesis of Radically Polymerizable Monomers. Macromol. Chem. Phys., 220, 2019, 1900179, 10.1002/macp.201900179.
Condat, M., Babinot, J., Tomane, S., Malval, J.-P., Kang, I.-K., Spillebout, F., Mazeran, P.-E., Lalevée, J., Andalloussi, S.A., Versace, D.-L., Development of photoactivable glycerol-based coatings containing quercetin for antibacterial applications. RSC Adv. 6 (2016), 18235–18245, 10.1039/C5RA25267A.
Sautrot-Ba, P., Malval, J.-P., Weiss-Maurin, M., Paul, J., Blacha-Grzechnik, A., Tomane, S., Mazeran, P.-E., Lalevée, J., Langlois, V., Versace, D.-L., Paprika, Gallic Acid, and Visible Light: the Green Combination for the Synthesis of Biocide Coatings. ACS Sustain. Chem. Eng. 6 (2018), 104–109, 10.1021/acssuschemeng.7b03723.
Durgut, E., Sherborne, C., Aldemir Dikici, B., Reilly, G.C., Claeyssens, F., Preparation of Interconnected Pickering Polymerized High Internal phase Emulsions by arrested Coalescence. Langmuir 38 (2022), 10953–10962, 10.1021/acs.langmuir.2c01243.
Zhang, C., Yan, M., Cochran, E.W., Kessler, M.R., Biorenewable polymers based on acrylated epoxidized soybean oil and methacrylated vanillin. Mater. Today Commun. 5 (2015), 18–22, 10.1016/j.mtcomm.2015.09.003.
Mattar, N., de Anda, A.R., Vahabi, H., Renard, E., Langlois, V., Resorcinol-based Epoxy Resins Hardened with Limonene and Eugenol Derivatives: from the Synthesis of Renewable Diamines to the Mechanical Properties of Biobased Thermosets. ACS Sustain. Chem. Eng. 8 (2020), 13064–13075, 10.1021/acssuschemeng.0c04780.
Degli Esposti, M., Pilati, F., Bondi, M., Niederhäusern, S., Iseppi, R., Toselli, M., Preparation, characterization, and antibacterial activity of photocured thymol-doped acrylic resins. J. Coat. Technol. Res. 10 (2013), 371–379, 10.1007/s11998-012-9453-3.
Blacha-Grzechnik, A., Krzywiecki, M., Motyka, R., Czichy, M., Electrochemically Polymerized Terthiopehene–C60 Dyads for the Photochemical Generation of Singlet Oxygen. J. Phys. Chem. C 123 (2019), 25915–25924, 10.1021/acs.jpcc.9b06101.
Elgendy, E.M., Khayyat, S.A., Oxidation reactions of some natural volatile aromatic compounds: anethole and eugenol, Russ. J. Org. Chem. 44 (2008), 823–829, 10.1134/S1070428008060079.
Li, X., Tao, Y., Zhu, L., Ma, S., Luo, S., Zhao, Z., Sun, N., Ge, X., Ye, Z., Optical and chemical properties and oxidative potential of aqueous-phase products from OH and 3C∗-initiated photooxidation of eugenol. Atmos. Chem. Phys. 22 (2022), 7793–7814, 10.5194/acp-22-7793-2022.
Mahcene, Z., Khelil, A., Hasni, S., Akman, P.K., Bozkurt, F., Birech, K., Goudjil, M.B., Tornuk, F., Development and characterization of sodium alginate based active edible films incorporated with essential oils of some medicinal plants. Int. J. Biol. Macromol. 145 (2020), 124–132, 10.1016/j.ijbiomac.2019.12.093.
Devi, K.P., Nisha, S.A., Sakthivel, R., Pandian, S.K., Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J. Ethnopharmacol. 130 (2010), 107–115, 10.1016/j.jep.2010.04.025.
Lacey, R.F., Binder, B.M., Ethylene Regulates the Physiology of the Cyanobacterium Synechocystis sp. PCC 6803 via an Ethylene Receptor. Plant Physiol. 171 (2016), 2798–2809, 10.1104/pp.16.00602.
Walsh, D.J., Livinghouse, T., Goeres, D.M., Mettler, M., Stewart, P.S., Antimicrobial activity of naturally Occurring Phenols and Derivatives against Biofilm and Planktonic Bacteria. Front. Chem., 7, 2019, 10.3389/fchem.2019.00653.
Elian, C., Andaloussi, S.A., Moilleron, R., Decousser, J.-W., Boyer, C., Versace, D.-L., Biobased polymer resources and essential oils: a green combination for antibacterial applications. J. Mater. Chem. B 10 (2022), 9081–9124, 10.1039/D2TB01544G.
Guimarães, A.C., Meireles, L.M., Lemos, M.F., Guimarães, M.C.C., Endringer, D.C., Fronza, M., Scherer, R., Antibacterial activity of Terpenes and Terpenoids present in Essential oils. Molecules, 24, 2019, 2471, 10.3390/molecules24132471.