[en] Microtubules control different aspects of cell polarization. In cells with a radial microtubule system, a pivotal role in setting up asymmetry is attributed to the relative positioning of the centrosome and the nucleus. Here, we show that centrosome loss had no effect on the ability of endothelial cells to polarize and move in 2D and 3D environments. In contrast, non-centrosomal microtubules stabilized by the microtubule minus-end-binding protein CAMSAP2 were required for directional migration on 2D substrates and for the establishment of polarized cell morphology in soft 3D matrices. CAMSAP2 was also important for persistent endothelial cell sprouting during in vivo zebrafish vessel development. In the absence of CAMSAP2, cell polarization in 3D could be partly rescued by centrosome depletion, indicating that in these conditions the centrosome inhibited cell polarity. We propose that CAMSAP2-protected non-centrosomal microtubules are needed for establishing cell asymmetry by enabling microtubule enrichment in a single-cell protrusion.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Martin, Maud ; Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
Bacquelaine Veloso, Alexandra ; Université de Liège - ULiège > Département des sciences de la vie > GIGA-R : Virologie - Immunologie
Wu, Jingchao; Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
Katrukha, Eugene A; Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
Akhmanova, Anna ; Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
Language :
English
Title :
Control of endothelial cell polarity and sprouting angiogenesis by non-centrosomal microtubules.
ERC - European Research Council NWO - Nederlandse Organisatie voor Wetenschappelijk Onderzoek Marie Skłodowska-Curie Actions CSC - China Scholarship Council F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding text :
Competing interests Anna Akhmanova: Senior editor, eLife. The other authors declare that no competing interests exist. European Research Council Synergy 609822 Anna Akhmanova Nederlandse Organisatie voor Wetenschappelijk Onderzoek ALW Open Program grant 824.15.017 Anna Akhmanova H2020 Marie Sk\u0142odowska-Curie Actions IEF fellowship Maud Martin China Scholarship Council PhD fellowship Jingchao Wu Fonds De La Recherche Scien-tifique - FNRS FRIA fellowship Alexandra Veloso The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Akhmanova A, Hoogenraad CC. 2015. Microtubule minus-end-targeting proteins. Current Biology 25:R162– R171. DOI: https://doi.org/10.1016/j.cub.2014.12.027, PMID: 25689915
Alieva IB, Berezinskaya T, Borisy GG, Vorobjev IA. 2015. Centrosome nucleates numerous ephemeral microtubules and only few of them participate in the radial array. Cell Biology International 39:1203–1216. DOI: https://doi.org/10.1002/cbin.10492, PMID: 25998195
Bayless KJ, Johnson GA. 2011. Role of the cytoskeleton in formation and maintenance of angiogenic sprouts. Journal of Vascular Research 48:369–385. DOI: https://doi.org/10.1159/000324751, PMID: 21464572
Bisel B, Wang Y, Wei JH, Xiang Y, Tang D, Miron-Mendoza M, Yoshimura S, Nakamura N, Seemann J. 2008. ERK regulates Golgi and centrosome orientation towards the leading edge through GRASP65. The Journal of Cell Biology 182:837–843. DOI: https://doi.org/10.1083/jcb.200805045, PMID: 18762583
Bornens M. 2012. The centrosome in cells and organisms. Science 335:422–426. DOI: https://doi.org/10.1126/science.1209037, PMID: 22282802
Bouchet BP, Noordstra I, van Amersfoort M, Katrukha EA, Ammon YC, Ter Hoeve ND, Hodgson L, Dogterom M, Derksen PWB, Akhmanova A. 2016. Mesenchymal cell invasion requires cooperative regulation of persistent microtubule growth by SLAIN2 and CLASP1. Developmental Cell 39:708–723. DOI: https://doi.org/10.1016/j. devcel.2016.11.009, PMID: 27939686
Braun A, Dang K, Buslig F, Baird MA, Davidson MW, Waterman CM, Myers KA. 2014. Rac1 and Aurora A regulate MCAK to polarize microtubule growth in migrating endothelial cells. The Journal of Cell Biology 206: 97–112. DOI: https://doi.org/10.1083/jcb.201401063, PMID: 25002679
Doyle AD, Wang FW, Matsumoto K, Yamada KM. 2009. One-dimensional topography underlies three-dimensional fibrillar cell migration. The Journal of Cell Biology 184:481–490. DOI: https://doi.org/10.1083/jcb. 200810041, PMID: 19221195
Dujardin DL, Barnhart LE, Stehman SA, Gomes ER, Gundersen GG, Vallee RB. 2003. A role for cytoplasmic dynein and LIS1 in directed cell movement. The Journal of Cell Biology 163:1205–1211. DOI: https://doi.org/10.1083/jcb.200310097, PMID: 14691133
Ellertsdóttir E, Lenard A, Blum Y, Krudewig A, Herwig L, Affolter M, Belting HG. 2010. Vascular morphogenesis in the zebrafish embryo. Developmental Biology 341:56–65. DOI: https://doi.org/10.1016/j.ydbio.2009.10.035, PMID: 19895803
Elric J, Etienne-Manneville S. 2014. Centrosome positioning in polarized cells: common themes and variations. Experimental Cell Research 328:240–248. DOI: https://doi.org/10.1016/j.yexcr.2014.09.004, PMID: 25218948
Etienne-Manneville S, Hall A. 2001. Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell 106:489–498. DOI: https://doi.org/10.1016/S0092-8674(01)00471-8, PMID: 11525734
Etienne-Manneville S. 2013. Microtubules in cell migration. Annual Review of Cell and Developmental Biology 29:471–499. DOI: https://doi.org/10.1146/annurev-cellbio-101011-155711, PMID: 23875648
Fischer RS, Gardel M, Ma X, Adelstein RS, Waterman CM. 2009. Local cortical tension by myosin II guides 3D endothelial cell branching. Current Biology 19:260–265. DOI: https://doi.org/10.1016/j.cub.2008.12.045, PMID: 19185493
Franco CA, Jones ML, Bernabeu MO, Vion AC, Barbacena P, Fan J, Mathivet T, Fonseca CG, Ragab A, Yamaguchi TP, Coveney PV, Lang RA, Gerhardt H. 2016. Non-canonical Wnt signalling modulates the endothelial shear stress flow sensor in vascular remodelling. eLife 5:e07727. DOI: https://doi.org/10.7554/eLife. 07727, PMID: 26845523
Fritz RD, Letzelter M, Reimann A, Martin K, Fusco L, Ritsma L, Ponsioen B, Fluri E, Schulte-Merker S, van Rheenen J, Pertz O. 2013. A versatile toolkit to produce sensitive FRET biosensors to visualize signaling in time and space. Science Signaling 6:r13. DOI: https://doi.org/10.1126/scisignal.2004135, PMID: 23882122
Geudens I, Gerhardt H. 2011. Coordinating cell behaviour during blood vessel formation. Development 138: 4569–4583. DOI: https://doi.org/10.1242/dev.062323, PMID: 21965610
Godinho SA, Picone R, Burute M, Dagher R, Su Y, Leung CT, Polyak K, Brugge JS, Théry M, Pellman D. 2014. Oncogene-like induction of cellular invasion from centrosome amplification. Nature 510:167–171. DOI: https://doi.org/10.1038/nature13277, PMID: 24739973
Gotlieb AI, May LM, Subrahmanyan L, Kalnins VI. 1981. Distribution of microtubule organizing centers in migrating sheets of endothelial cells. The Journal of Cell Biology 91:589–594. DOI: https://doi.org/10.1083/jcb. 91.2.589, PMID: 7309800
Hurtado L, Caballero C, Gavilan MP, Cardenas J, Bornens M, Rios RM. 2011. Disconnecting the Golgi ribbon from the centrosome prevents directional cell migration and ciliogenesis. The Journal of Cell Biology 193:917– 933. DOI: https://doi.org/10.1083/jcb.201011014, PMID: 21606206
Isogai S, Lawson ND, Torrealday S, Horiguchi M, Weinstein BM. 2003. Angiogenic network formation in the developing vertebrate trunk. Development 130:5281–5290. DOI: https://doi.org/10.1242/dev.00733, PMID: 12 954720
Jiang K, Hua S, Mohan R, Grigoriev I, Yau KW, Liu Q, Katrukha EA, Altelaar AF, Heck AJ, Hoogenraad CC, Akhmanova A. 2014. Microtubule minus-end stabilization by polymerization-driven CAMSAP deposition. Developmental Cell 28:295–309. DOI: https://doi.org/10.1016/j.devcel.2014.01.001, PMID: 24486153
Koh W, Stratman AN, Sacharidou A, Davis GE. 2008. In vitro three dimensional collagen matrix models of endothelial lumen formation during vasculogenesis and angiogenesis. Methods in Enzymology 443:83–101. DOI: https://doi.org/10.1016/S0076-6879(08)02005-3, PMID: 18772012
Kohlmaier G, Loncarek J, Meng X, McEwen BF, Mogensen MM, Spektor A, Dynlacht BD, Khodjakov A, Gönczy P. 2009. Overly long centrioles and defective cell division upon excess of the SAS-4-related protein CPAP. Current Biology 19:1012–1018. DOI: https://doi.org/10.1016/j.cub.2009.05.018, PMID: 19481460
Koonce MP, Cloney RA, Berns MW. 1984. Laser irradiation of centrosomes in newt eosinophils: evidence of centriole role in motility. The Journal of Cell Biology 98:1999–2010. DOI: https://doi.org/10.1083/jcb.98.6. 1999, PMID: 6725407
Kuijpers M, Hoogenraad CC. 2011. Centrosomes, microtubules and neuronal development. Molecular and Cellular Neuroscience 48:349–358. DOI: https://doi.org/10.1016/j.mcn.2011.05.004, PMID: 21722732
Kupfer A, Louvard D, Singer SJ. 1982. Polarization of the Golgi apparatus and the microtubule-organizing center in cultured fibroblasts at the edge of an experimental wound. PNAS 79:2603–2607. DOI: https://doi.org/10. 1073/pnas.79.8.2603, PMID: 7045867
Kushner EJ, Ferro LS, Liu JY, Durrant JR, Rogers SL, Dudley AC, Bautch VL. 2014. Excess centrosomes disrupt endothelial cell migration via centrosome scattering. The Journal of Cell Biology 206:257–272. DOI: https://doi. org/10.1083/jcb.201311013, PMID: 25049273
Lee CY, Bautch VL. 2011. Ups and downs of guided vessel sprouting: the role of polarity. Physiology 26:326–333. DOI: https://doi.org/10.1152/physiol.00018.2011, PMID: 22013191
Levy JR, Holzbaur EL. 2008. Dynein drives nuclear rotation during forward progression of motile fibroblasts. Journal of Cell Science 121:3187–3195. DOI: https://doi.org/10.1242/jcs.033878, PMID: 18782860
Luxton GW, Gundersen GG. 2011. Orientation and function of the nuclear-centrosomal axis during cell migration. Current Opinion in Cell Biology 23:579–588. DOI: https://doi.org/10.1016/j.ceb.2011.08.001, PMID: 21885270
Malech HL, Root RK, Gallin JI. 1977. Structural analysis of human neutrophil migration. Centriole, microtubule, and microfilament orientation and function during chemotaxis. The Journal of Cell Biology 75:666–693. DOI: https://doi.org/10.1083/jcb.75.3.666, PMID: 562885
Martin M, Geudens I, Bruyr J, Potente M, Bleuart A, Lebrun M, Simonis N, Deroanne C, Twizere JC, Soubeyran P, Peixoto P, Mottet D, Janssens V, Hofmann WK, Claes F, Carmeliet P, Kettmann R, Gerhardt H, Dequiedt F. 2013. PP2A regulatory subunit Ba controls endothelial contractility and vessel lumen integrity via regulation of HDAC7. The EMBO Journal 32:2491–2503. DOI: https://doi.org/10.1038/emboj.2013.187, PMID: 23955003
Matanis T, Akhmanova A, Wulf P, Del Nery E, Weide T, Stepanova T, Galjart N, Grosveld F, Goud B, De Zeeuw CI, Barnekow A, Hoogenraad CC. 2002. Bicaudal-D regulates COPI-independent Golgi-ER transport by recruiting the dynein-dynactin motor complex. Nature Cell Biology 4:986–992. DOI: https://doi.org/10.1038/ncb891, PMID: 12447383
Matsumoto T, Schiller P, Dieterich LC, Bahram F, Iribe Y, Hellman U, Wikner C, Chan G, Claesson-Welsh L, Dimberg A. 2008. Ninein is expressed in the cytoplasm of angiogenic tip-cells and regulates tubular morphogenesis of endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology 28:2123–2130. DOI: https://doi.org/10.1161/ATVBAHA.108.169128, PMID: 18772498
Miller PM, Folkmann AW, Maia AR, Efimova N, Efimov A, Kaverina I. 2009. Golgi-derived CLASP-dependent microtubules control Golgi organization and polarized trafficking in motile cells. Nature Cell Biology 11:1069– 1080. DOI: https://doi.org/10.1038/ncb1920, PMID: 19701196
Moshfegh Y, Bravo-Cordero JJ, Miskolci V, Condeelis J, Hodgson L. 2014. A Trio-Rac1-Pak1 signalling axis drives invadopodia disassembly. Nature Cell Biology 16:571–583. DOI: https://doi.org/10.1038/ncb2972, PMID: 24859002
Moss DK, Bellett G, Carter JM, Liovic M, Keynton J, Prescott AR, Lane EB, Mogensen MM. 2007. Ninein is released from the centrosome and moves bi-directionally along microtubules. Journal of Cell Science 120: 3064–3074. DOI: https://doi.org/10.1242/jcs.010322, PMID: 17698918
Myers KA, Applegate KT, Danuser G, Fischer RS, Waterman CM. 2011. Distinct ECM mechanosensing pathways regulate microtubule dynamics to control endothelial cell branching morphogenesis. The Journal of Cell Biology 192:321–334. DOI: https://doi.org/10.1083/jcb.201006009, PMID: 21263030
Noordstra I, Liu Q, Nijenhuis W, Hua S, Jiang K, Baars M, Remmelzwaal S, Martin M, Kapitein LC, Akhmanova A. 2016. Control of apico-basal epithelial polarity by the microtubule minus-end-binding protein CAMSAP3 and spectraplakin ACF7. Journal of Cell Science 129:4278–4288. DOI: https://doi.org/10.1242/jcs.194878, PMID: 27802168
Pfisterer L, Korff T. 2016. Spheroid-based in vitro angiogenesis model. Methods in Molecular Biology 1430:167– 177. DOI: https://doi.org/10.1007/978-1-4939-3628-1_11, PMID: 27172953
Phng LK, Stanchi F, Gerhardt H. 2013. Filopodia are dispensable for endothelial tip cell guidance. Development 140:4031–4040. DOI: https://doi.org/10.1242/dev.097352, PMID: 24046319
Potente M, Gerhardt H, Carmeliet P. 2011. Basic and therapeutic aspects of angiogenesis. Cell 146:873–887. DOI: https://doi.org/10.1016/j.cell.2011.08.039, PMID: 21925313
Pouthas F, Girard P, Lecaudey V, Ly TB, Gilmour D, Boulin C, Pepperkok R, Reynaud EG. 2008. In migrating cells, the Golgi complex and the position of the centrosome depend on geometrical constraints of the substratum. Journal of Cell Science 121:2406–2414. DOI: https://doi.org/10.1242/jcs.026849, PMID: 18577576
Püspöki Z, Storath M, Sage D, Unser M. 2016. Transforms and Operators for Directional Bioimage Analysis: A Survey. Advances in Anatomy, Embryology, and Cell Biology 219:69–93. DOI: https://doi.org/10.1007/978-3-319-28549-8_3, PMID: 27207363
Rios RM. 2014. The centrosome-Golgi apparatus nexus. Philosophical Transactions of the Royal Society B: Biological Sciences 369:20130462. DOI: https://doi.org/10.1098/rstb.2013.0462, PMID: 25047616
Rocha SF, Adams RH. 2009. Molecular differentiation and specialization of vascular beds. Angiogenesis 12:139– 147. DOI: https://doi.org/10.1007/s10456-009-9132-x, PMID: 19212819
Roubin R, Acquaviva C, Chevrier V, Sedjaï F, Zyss D, Birnbaum D, Rosnet O. 2013. Myomegalin is necessary for the formation of centrosomal and Golgi-derived microtubules. Biology Open 2:238–250. DOI: https://doi.org/10.1242/bio.20123392, PMID: 23430395
Schmidt TI, Kleylein-Sohn J, Westendorf J, Le Clech M, Lavoie SB, Stierhof YD, Nigg EA. 2009. Control of centriole length by CPAP and CP110. Current Biology 19:1005–1011. DOI: https://doi.org/10.1016/j.cub.2009. 05.016, PMID: 19481458
Schmoranzer J, Fawcett JP, Segura M, Tan S, Vallee RB, Pawson T, Gundersen GG. 2009. Par3 and dynein associate to regulate local microtubule dynamics and centrosome orientation during migration. Current Biology 19:1065–1074. DOI: https://doi.org/10.1016/j.cub.2009.05.065, PMID: 19540120
Schmoranzer J, Kreitzer G, Simon SM. 2003. Migrating fibroblasts perform polarized, microtubule-dependent exocytosis towards the leading edge. Journal of Cell Science 116:4513–4519. DOI: https://doi.org/10.1242/jcs. 00748, PMID: 14576345
Schütze K, Maniotis A, Schliwa M. 1991. The position of the microtubule-organizing center in directionally migrating fibroblasts depends on the nature of the substratum. PNAS 88:8367–8371. DOI: https://doi.org/10. 1073/pnas.88.19.8367, PMID: 1924296
Siegrist SE, Doe CQ. 2007. Microtubule-induced cortical cell polarity. Genes & Development 21:483–496. DOI: https://doi.org/10.1101/gad.1511207, PMID: 17344411
Stehbens SJ, Paszek M, Pemble H, Ettinger A, Gierke S, Wittmann T. 2014. CLASPs link focal-adhesion-associated microtubule capture to localized exocytosis and adhesion site turnover. Nature Cell Biology 16:558–570. DOI: https://doi.org/10.1038/ncb2975, PMID: 24859005
Stepanova T, Slemmer J, Hoogenraad CC, Lansbergen G, Dortland B, De Zeeuw CI, Grosveld F, van Cappellen G, Akhmanova A, Galjart N. 2003. Visualization of microtubule growth in cultured neurons via the use of EB3-GFP (end-binding protein 3-green fluorescent protein). The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 23:2655–2664. PMID: 12684451
Tanaka N, Meng W, Nagae S, Takeichi M. 2012. Nezha/CAMSAP3 and CAMSAP2 cooperate in epithelial-specific organization of noncentrosomal microtubules. PNAS 109:20029–20034. DOI: https://doi.org/10.1073/pnas. 1218017109, PMID: 23169647
Tang CJ, Fu RH, Wu KS, Hsu WB, Tang TK. 2009. CPAP is a cell-cycle regulated protein that controls centriole length. Nature Cell Biology 11:825–831. DOI: https://doi.org/10.1038/ncb1889, PMID: 19503075
Tang N, Marshall WF. 2012. Centrosome positioning in vertebrate development. Journal of Cell Science 125: 4951–4961. DOI: https://doi.org/10.1242/jcs.038083, PMID: 23277534
Vinogradova T, Miller PM, Kaverina I. 2009. Microtubule network asymmetry in motile cells: role of Golgi-derived array. Cell Cycle 8:2168–2174. DOI: https://doi.org/10.4161/cc.8.14.9074, PMID: 19556895
Vinogradova T, Paul R, Grimaldi AD, Loncarek J, Miller PM, Yampolsky D, Magidson V, Khodjakov A, Mogilner A, Kaverina I. 2012. Concerted effort of centrosomal and Golgi-derived microtubules is required for proper Golgi complex assembly but not for maintenance. Molecular Biology of the Cell 23:820–833. DOI: https://doi. org/10.1091/mbc.E11-06-0550, PMID: 22262454
Wakida NM, Botvinick EL, Lin J, Berns MW. 2010. An intact centrosome is required for the maintenance of polarization during directional cell migration. PLoS One 5:e15462. DOI: https://doi.org/10.1371/journal.pone. 0015462, PMID: 21203421
Wang S, Wu D, Quintin S, Green RA, Cheerambathur DK, Ochoa SD, Desai A, Oegema K. 2015. NOCA-1 functions with g-tubulin and in parallel to Patronin to assemble non-centrosomal microtubule arrays in C. elegans. eLife 4:e08649. DOI: https://doi.org/10.7554/eLife.08649, PMID: 26371552
Wang Z, Zhang C, Qi RZ. 2014. A newly identified myomegalin isoform functions in Golgi microtubule organization and ER-Golgi transport. Journal of Cell Science 127:4904–4917. DOI: https://doi.org/10.1242/jcs. 155408, PMID: 25217626
Wong YL, Anzola JV, Davis RL, Yoon M, Motamedi A, Kroll A, Seo CP, Hsia JE, Kim SK, Mitchell JW, Mitchell BJ, Desai A, Gahman TC, Shiau AK, Oegema K. 2015. Cell biology. Reversible centriole depletion with an inhibitor of Polo-like kinase 4. Science 348:1155–1160. DOI: https://doi.org/10.1126/science.aaa5111, PMID: 25931445
Wu J, de Heus C, Liu Q, Bouchet BP, Noordstra I, Jiang K, Hua S, Martin M, Yang C, Grigoriev I, Katrukha EA, Altelaar AFM, Hoogenraad CC, Qi RZ, Klumperman J, Akhmanova A. 2016. Molecular pathway of microtubule organization at the golgi apparatus. Developmental Cell 39:44–60. DOI: https://doi.org/10.1016/j.devcel.2016. 08.009, PMID: 27666745
Yadav S, Linstedt AD. 2011. Golgi positioning. Cold Spring Harbor Perspectives in Biology 3:a005322. DOI: https://doi.org/10.1101/cshperspect.a005322, PMID: 21504874
Yadav S, Puri S, Linstedt AD. 2009. A primary role for Golgi positioning in directed secretion, cell polarity, and wound healing. Molecular Biology of the Cell 20:1728–1736. DOI: https://doi.org/10.1091/mbc.E08-10-1077, PMID: 19158377
Yamada KH, Nakajima Y, Geyer M, Wary KK, Ushio-Fukai M, Komarova Y, Malik AB. 2014. KIF13B regulates angiogenesis through Golgi to plasma membrane trafficking of VEGFR2. Journal of Cell Science 127:4518– 4530. DOI: https://doi.org/10.1242/jcs.156109, PMID: 25128562
Yao Y, Smal I, Grigoriev I, Martin M, Akhmanova A, Meijering E. 2017. Automated Analysis of Intracellular Dynamic Processes. Methods in Molecular Biology 1563:209–228. DOI: https://doi.org/10.1007/978-1-4939-6810-7_14, PMID: 28324611
Yau KW, van Beuningen SF, Cunha-Ferreira I, Cloin BM, van Battum EY, Will L, Schätzle P, Tas RP, van Krugten J, Katrukha EA, Jiang K, Wulf PS, Mikhaylova M, Harterink M, Pasterkamp RJ, Akhmanova A, Kapitein LC, Hoogenraad CC. 2014. Microtubule minus-end binding protein CAMSAP2 controls axon specification and dendrite development. Neuron 82:1058–1073. DOI: https://doi.org/10.1016/j.neuron.2014.04.019, PMID: 2490 8486
Yvon AM, Walker JW, Danowski B, Fagerstrom C, Khodjakov A, Wadsworth P. 2002. Centrosome reorientation in wound-edge cells is cell type specific. Molecular Biology of the Cell 13:1871–1880. DOI: https://doi.org/10. 1091/mbc.01-11-0539, PMID: 12058055
Zhu X, Kaverina I. 2013. Golgi as an MTOC: making microtubules for its own good. Histochemistry and Cell Biology 140:361–367. DOI: https://doi.org/10.1007/s00418-013-1119-4, PMID: 23821162