[en] T cell immunotherapies have revolutionized treatment for a subset of cancers. Yet, a major hurdle has been the lack of facile and predicative preclinical animal models that permit dynamic visualization of T cell immune responses at single-cell resolution in vivo. Here, optically clear immunocompromised zebrafish were engrafted with fluorescent-labeled human cancers along with chimeric antigen receptor T (CAR T) cells, bispecific T cell engagers (BiTEs), and antibody peptide epitope conjugates (APECs), allowing real-time single-cell visualization of T cell-based immunotherapies in vivo. This work uncovered important differences in the kinetics of T cell infiltration, tumor cell engagement, and killing between these immunotherapies and established early endpoint analysis to predict therapy responses. We also established EGFR-targeted immunotherapies as a powerful approach to kill rhabdomyosarcoma muscle cancers, providing strong preclinical rationale for assessing a wider array of T cell immunotherapies in this disease.
Disciplines :
Oncology
Author, co-author :
Yan, Chuan ; Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA ; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA ; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA ; Harvard Stem Cell Institute, Cambridge, MA
Yang, Qiqi ; Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA ; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA ; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA ; Harvard Stem Cell Institute, Cambridge, MA
Zhang, Songfa ; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
Millar, David G ; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
Alpert, Eric J ; Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA ; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA ; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA ; Harvard Stem Cell Institute, Cambridge, MA
Do, Daniel ; Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA ; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA ; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA ; Harvard Stem Cell Institute, Cambridge, MA
Bacquelaine Veloso, Alexandra ; Université de Liège - ULiège > Département des sciences de la vie > GIGA-R : Virologie - Immunologie ; Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA ; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA ; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA ; Harvard Stem Cell Institute, Cambridge, MA
Brunson, Dalton C ; Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA ; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA ; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA ; Harvard Stem Cell Institute, Cambridge, MA
Drapkin, Benjamin J ; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
Stanzione, Marcello ; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
Scarfò, Irene ; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
Moore, John C ; Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA ; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA ; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA ; Harvard Stem Cell Institute, Cambridge, MA
Iyer, Sowmya ; Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA ; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA ; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA ; Harvard Stem Cell Institute, Cambridge, MA
Qin, Qian ; Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA ; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA ; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA ; Harvard Stem Cell Institute, Cambridge, MA
Wei, Yun ; Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA ; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA ; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA ; Harvard Stem Cell Institute, Cambridge, MA
McCarthy, Karin M ; Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA ; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA ; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA ; Harvard Stem Cell Institute, Cambridge, MA
Rawls, John F ; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC
Dyson, Nick J ; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
Cobbold, Mark ; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA ; Early Oncology R&D, AstraZeneca, Gaithersburg, MD
Maus, Marcela V ; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
Langenau, David M ; Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA ; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA ; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA ; Harvard Stem Cell Institute, Cambridge, MA
This work is supported by National Institutes of Health grants R24OD016761 (D.M. Langenau), R01CA154923 (D.M. Langenau), R01CA215118 (D.M. Langenau), and R01CA211734 (D.M. Langenau); the Liddy Shriver Sarcoma Initiative (D.M. Langenau); the Massachusetts General Hospital Research Scholars Program (D.M. Langenau), U01CA220323 (N.J. Dyson); the Tosteson & Fund for Medical Discovery Fellowship from Massachusetts General Hospital (C. Yan); and the Alex’s Lemonade Stand Foundation Young Investigator Award (C. Yan). This work is supported by National Institutes of Health
grants R24OD016761 (D.M. Langenau), R01CA154923 (D.M.
Langenau), R01CA215118 (D.M. Langenau), and R01CA211734
(D.M. Langenau); the Liddy Shriver Sarcoma Initiative
(D.M. Langenau); the Massachusetts General Hospital Research
Scholars Program (D.M. Langenau), U01CA220323
(N.J. Dyson); the Tosteson & Fund for Medical Discovery
Fellowship from Massachusetts General Hospital (C. Yan);
and the Alex’s Lemonade Stand Foundation Young Investigator
Award (C. Yan).
Adachi, K., Y. Kano, T. Nagai, N. Okuyama, Y. Sakoda, and K. Tamada. 2018. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nat. Biotechnol. 36: 346–351. https://doi.org/10.1038/nbt.4086
Bahrami, A., A.M. Gown, G.S. Baird, M.J. Hicks, and A.L. Folpe. 2008. Aberrant expression of epithelial and neuroendocrine markers in alveolar rhabdomyosarcoma: a potentially serious diagnostic pitfall. Mod. Pathol. 21:795–806. https://doi.org/10.1038/modpathol.2008.86
Boissonnas, A., L. Fetler, I.S. Zeelenberg, S. Hugues, and S. Amigorena. 2007. In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor. J. Exp. Med. 204:345–356. https://doi.org/10.1084/jem.20061890
Boulch, M., M. Cazaux, Y. Loe-Mie, R. Thibaut, B. Corre, F. Lemaître, C.L. Grandjean, Z. Garcia, and P. Bousso. 2021. A cross-talk between CAR T cell subsets and the tumor microenvironment is essential for sustained cytotoxic activity. Sci. Immunol. 6:eabd4344. https://doi.org/10.1126/sciimmunol.abd4344
Brischwein, K., B. Schlereth, B. Guller, C. Steiger, A. Wolf, R. Lutterbuese, S. Offner, M. Locher, T. Urbig, T. Raum, et al. 2006. MT110: a novel bispecific single-chain antibody construct with high efficacy in eradicating established tumors. Mol. Immunol. 43:1129–1143. https://doi.org/10.1016/j.molimm.2005.07.034
Cazaux, M., C.L. Grandjean, F. Lemaître, Z. Garcia, R.J. Beck, I. Milo, J. Postat, J.B. Beltman, E.J. Cheadle, and P. Bousso. 2019. Single-cell imaging of CAR T cell activity in vivo reveals extensive functional and anatomical heterogeneity. J. Exp. Med. 216:1038–1049. https://doi.org/10.1084/jem.20182375
Chai, L.F., E. Prince, V.G. Pillarisetty, and S.C. Katz. 2020. Challenges in assessing solid tumor responses to immunotherapy. Cancer Gene Ther. 27: 528–538. https://doi.org/10.1038/s41417-019-0155-1
Das, R., T. Strowig, R. Verma, S. Koduru, A. Hafemann, S. Hopf, M.H. Kocoglu, C. Borsotti, L. Zhang, A. Branagan, et al. 2016. Microenvironment-dependent growth of preneoplastic and malignant plasma cells in humanized mice. Nat. Med. 22:1351–1357. https://doi.org/10.1038/nm.4202
Devy, L., L. Huang, L. Naa, N. Yanamandra, H. Pieters, N. Frans, E. Chang, Q. Tao, M. Vanhove, A. Lejeune, et al. 2009. Selective inhibition of matrix metalloproteinase-14 blocks tumor growth, invasion, and angiogenesis. Cancer Res. 69:1517–1526. https://doi.org/10.1158/0008-5472.CAN-08 -3255
Dobrenkov, K., I. Ostrovnaya, J. Gu, I.Y. Cheung, and N.K. Cheung. 2016. Oncotargets GD2 and GD3 are highly expressed in sarcomas of children, adolescents, and young adults. Pediatr. Blood Cancer. 63:1780–1785. https://doi.org/10.1002/pbc.26097
Drapkin, B.J., J. George, C.L. Christensen, M. Mino-Kenudson, R. Dries, T. Sundaresan, S. Phat, D.T. Myers, J. Zhong, P. Igo, et al. 2018. Genomic and Functional Fidelity of Small Cell Lung Cancer Patient-Derived Xenografts. Cancer Discov. 8:600–615. https://doi.org/10.1158/2159-8290.CD-17-0935
Farago, A.F., B.Y. Yeap, M. Stanzione, Y.P. Hung, R.S. Heist, J.P. Marcoux, J. Zhong, D. Rangachari, D.A. Barbie, S. Phat, et al. 2019. Combination Olaparib and Temozolomide in Relapsed Small-Cell Lung Cancer. Cancer Discov. 9:1372–1387. https://doi.org/10.1158/2159-8290.CD-19-0582
Fraietta, J.A., K.A. Beckwith, P.R. Patel, M. Ruella, Z. Zheng, D.M. Barrett, S.F. Lacey, J.J. Melenhorst, S.E. McGettigan, D.R. Cook, et al. 2016. Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia. Blood. 127:1117–1127. https://doi.org/10.1182/blood-2015-11 -679134
Ganti, R., S.X. Skapek, J. Zhang, C.E. Fuller, J. Wu, C.A. Billups, P.P. Breitfeld, J.D. Dalton, W.H. Meyer, and J.D. Khoury. 2006. Expression and genomic status of EGFR and ErbB-2 in alveolar and embryonal rhabdomyosarcoma. Mod. Pathol. 19:1213–1220.
Giordano-Attianese, G., P. Gainza, E. Gray-Gaillard, E. Cribioli, S. Shui, S. Kim, M.J. Kwak, S. Vollers, A.J. Corria Osorio, P. Reichenbach, et al. 2020. A computationally designed chimeric antigen receptor provides a small-molecule safety switch for T-cell therapy. Nat. Biotechnol. 38: 426–432. https://doi.org/10.1038/s41587-019-0403-9
Goldman, J.P., M.P. Blundell, L. Lopes, C. Kinnon, J.P. Di Santo, and A.J. Thrasher. 1998. Enhanced human cell engraftment in mice deficient in RAG2 and the common cytokine receptor gamma chain. Br. J. Haematol. 103:335–342. https://doi.org/10.1046/j.1365-2141.1998.00980.x
Grass, B., M. Wachtel, S. Behnke, I. Leuschner, F.K. Niggli, and B.W. Schäfer. 2009. Immunohistochemical detection of EGFR, fibrillin-2, P-cadherin and AP2beta as biomarkers for rhabdomyosarcoma diagnostics. Histopathology. 54:873–879. https://doi.org/10.1111/j.1365-2559.2009.03303.x
Guo, Y., K. Feng, Y. Liu, Z. Wu, H. Dai, Q. Yang, Y. Wang, H. Jia, and W. Han. 2018. Phase I Study of Chimeric Antigen Receptor-Modified T Cells in Patients with EGFR-Positive Advanced Biliary Tract Cancers. Clin. Cancer Res. 24:1277–1286. https://doi.org/10.1158/1078-0432.CCR-17 -0432
Halle, S., K.A. Keyser, F.R. Stahl, A. Busche, A. Marquardt, X. Zheng, M. Galla, V. Heissmeyer, K. Heller, J. Boelter, et al. 2016. In Vivo Killing Capacity of Cytotoxic T Cells Is Limited and Involves Dynamic Interactions and T Cell Cooperativity. Immunity. 44:233–245. https://doi.org/10.1016/j.immuni.2016.01.010
He, X., X. Yin, J. Wu, S.L. Wickström, Y. Duo, Q. Du, S. Qin, S. Yao, X. Jing, K. Hosaka, et al. 2020. Visualization of human T lymphocyte-mediated eradication of cancer cells in vivo. Proc. Natl. Acad. Sci. USA. 117: 22910–22919. https://doi.org/10.1073/pnas.2009092117
Hegde, M., S.K. Joseph, F. Pashankar, C. DeRenzo, K. Sanber, S. Navai, T.T. Byrd, J. Hicks, M.L. Xu, C. Gerken, et al. 2020. Tumor response and endogenous immune reactivity after administration of HER2 CAR T cells in a child with metastatic rhabdomyosarcoma. Nat. Commun. 11: 3549. https://doi.org/10.1038/s41467-020-17175-8
Hoekstra, M.E., L. Bornes, F.E. Dijkgraaf, D. Philips, I.N. Pardieck, M. Toebes, D.S. Thommen, J. van Rheenen, and T.N.M. Schumacher. 2020. Long-distance modulation of bystander tumor cells by CD8+ T cell-secreted IFNγ. Nat. Can. 1:291–301. https://doi.org/10.1038/s43018-020-0036-4
Huehls, A.M., T.A. Coupet, and C.L. Sentman. 2015. Bispecific T-cell engagers for cancer immunotherapy. Immunol. Cell Biol. 93:290–296. https://doi.org/10.1038/icb.2014.93
Hwang, W.Y., Y. Fu, D. Reyon, M.L. Maeder, S.Q. Tsai, J.D. Sander, R.T. Peterson, J.R. Yeh, and J.K. Joung. 2013. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31:227–229. https://doi.org/10.1038/nbt.2501
Jiang, C., W. Zhao, M. Qin, M. Jin, L. Chang, and X. Ma. 2019. CD56-chimeric antigen receptor T-cell therapy for refractory/recurrent rhabdomyosarcoma: A 3.5-year follow-up case report. Medicine (Baltimore). 98: e17572. https://doi.org/10.1097/MD.0000000000017572
Klein, A.M., L. Mazutis, I. Akartuna, N. Tallapragada, A. Veres, V. Li, L. Peshkin, D.A. Weitz, and M.W. Kirschner. 2015. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 161: 1187–1201. https://doi.org/10.1016/j.cell.2015.04.044
Lee, D.W., J.N. Kochenderfer, M. Stetler-Stevenson, Y.K. Cui, C. Delbrook, S.A. Feldman, T.J. Fry, R. Orentas, M. Sabatino, N.N. Shah, et al. 2015. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 385:517–528. https://doi.org/10.1016/S0140 -6736(14)61403-3
Lim, W.A., and C.H. June. 2017. The Principles of Engineering Immune Cells to Treat Cancer. Cell. 168:724–740. https://doi.org/10.1016/j.cell.2017.01.016
Majzner, R.G., J.L. Theruvath, A. Nellan, S. Heitzeneder, Y. Cui, C.W. Mount, S.P. Rietberg, M.H. Linde, P. Xu, C. Rota, et al. 2019. CAR T Cells Targeting B7-H3, a Pan-Cancer Antigen, Demonstrate Potent Preclinical Activity Against Pediatric Solid Tumors and Brain Tumors. Clin. Cancer Res. 25:2560–2574. https://doi.org/10.1158/1078-0432.CCR-18-0432
Maruta, M., T. Ochi, K. Tanimoto, H. Asai, T. Saitou, H. Fujiwara, T. Imamura, K. Takenaka, and M. Yasukawa. 2019. Direct comparison of target-reactivity and cross-reactivity induced by CAR- and BiTE-redirected T cells for the development of antibody-based T-cell therapy. Sci. Rep. 9:13293. https://doi.org/10.1038/s41598-019-49834-2
Millar, D.G., R.R. Ramjiawan, K. Kawaguchi, N. Gupta, J. Chen, S. Zhang, T. Nojiri, W.W. Ho, S. Aoki, K. Jung, et al. 2020. Antibody-mediated delivery of viral epitopes to tumors harnesses CMV-specific T cells for cancer therapy. Nat. Biotechnol. 38:420–425. https://doi.org/10.1038/ s41587-019-0404-8
Milone, M.C., J.D. Fish, C. Carpenito, R.G. Carroll, G.K. Binder, D. Teachey, M. Samanta, M. Lakhal, B. Gloss, G. Danet-Desnoyers, et al. 2009. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol. Ther. 17:1453–1464. https://doi.org/10.1038/mt.2009.83
Mølhøj, M., S. Crommer, K. Brischwein, D. Rau, M. Sriskandarajah, P. Hoffmann, P. Kufer, R. Hofmeister, and P.A. Baeuerle. 2007. CD19-/ CD3-bispecific antibody of the BiTE class is far superior to tandem diabody with respect to redirected tumor cell lysis. Mol. Immunol. 44: 1935–1943. https://doi.org/10.1016/j.molimm.2006.09.032
Mulazzani, M., S.P. Fräßle, I. von Mücke-Heim, S. Langer, X. Zhou, H. Ishikawa-Ankerhold, J. Leube, W. Zhang, S. Dötsch, M. Svec, et al. 2019. Long-term in vivo microscopy of CAR T cell dynamics during eradication of CNS lymphoma in mice. Proc. Natl. Acad. Sci. USA. 116: 24275–24284. https://doi.org/10.1073/pnas.1903854116
O’Rourke, D.M., M.P. Nasrallah, A. Desai, J.J. Melenhorst, K. Mansfield, J.J.D. Morrissette, M. Martinez-Lage, S. Brem, E. Maloney, A. Shen, et al. 2017. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci. Transl. Med. 9:eaaa0984. https://doi.org/10.1126/scitranslmed.aaa0984
Pascoal, S., B. Salzer, E. Scheuringer, A. Wenninger-Weinzierl, C. Sturtzel, W. Holter, S. Taschner-Mandl, M. Lehner, and M. Distel. 2020. A Preclinical Embryonic Zebrafish Xenograft Model to Investigate CAR T Cells In Vivo. Cancers (Basel). 12:567. https://doi.org/10.3390/ cancers12030567
Pegram, H.J., J.C. Lee, E.G. Hayman, G.H. Imperato, T.F. Tedder, M. Sadelain, and R.J. Brentjens. 2012. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood. 119:4133–4141. https://doi.org/10.1182/blood-2011-12-400044
Quah, B.J., H.S. Warren, and C.R. Parish. 2007. Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester. Nat. Protoc. 2: 2049–2056. https://doi.org/10.1038/nprot.2007.296
Rafiq, S., C.S. Hackett, and R.J. Brentjens. 2020. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol. 17:147–167. https://doi.org/10.1038/s41571-019-0297-y
Rajan, V., N. Melong, W. Hing Wong, B. King, S.R. Tong, N. Mahajan, D. Gaston, T. Lund, D. Rittenberg, G. Dellaire, et al. 2020. Humanized
zebrafish enhance human hematopoietic stem cell survival and promote acute myeloid leukemia clonal diversity. Haematologica. 105: 2391–2399. https://doi.org/10.3324/haematol.2019.223040
Rapoport, A.P., E.A. Stadtmauer, G.K. Binder-Scholl, O. Goloubeva, D.T. Vogl, S.F. Lacey, A.Z. Badros, A. Garfall, B. Weiss, J. Finklestein, et al. 2015. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat. Med. 21:914–921. https://doi.org/10.1038/nm.3910
Roda-Navarro, P., and L. Álvarez-Vallina. 2020. Understanding the Spatial Topology of Artificial Immunological Synapses Assembled in T Cell-Redirecting Strategies: A Major Issue in Cancer Immunotherapy. Front. Cell Dev. Biol. 7:370. https://doi.org/10.3389/fcell.2019.00370
Rongvaux, A., T. Willinger, J. Martinek, T. Strowig, S.V. Gearty, L.L. Teichmann, Y. Saito, F. Marches, S. Halene, A.K. Palucka, et al. 2014. Development and function of human innate immune cells in a humanized mouse model. Nat. Biotechnol. 32:364–372. https://doi.org/10.1038/nbt.2858
Rosenberg, S.A., and N.P. Restifo. 2015. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 348:62–68. https://doi.org/10.1126/science.aaa4967
Ruella, M., D.M. Barrett, S.S. Kenderian, O. Shestova, T.J. Hofmann, J. Perazzelli, M. Klichinsky, V. Aikawa, F. Nazimuddin, M. Kozlowski, et al. 2016. Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies. J. Clin. Invest. 126:3814–3826. https://doi.org/10.1172/JCI87366
Saraf, A.J., P.S. Dickman, and P. Hingorani. 2019. Disialoganglioside GD2 Expression in Pediatric Rhabdomyosarcoma: A Case Series and Review of the Literature. J. Pediatr. Hematol. Oncol. 41:118–120. https://doi.org/10.1097/MPH.0000000000001311
Shibui, Y., K. Miyoshi, K. Kohashi, Y. Kinoshita, M. Kuda, H. Yamamoto, T. Taguchi, and Y. Oda. 2019. Glypican-3 expression in malignant small round cell tumors. Oncol. Lett. 17:3523–3528. https://doi.org/10.3892/ol.2019.9976
Skapek, S.X., A. Ferrari, A.A. Gupta, P.J. Lupo, E. Butler, J. Shipley, F.G. Barr, and D.S. Hawkins. 2019. Rhabdomyosarcoma. Nat. Rev. Dis. Primers. 5:1. https://doi.org/10.1038/s41572-018-0051-2
Stone, J.D., D.H. Aggen, A. Schietinger, H. Schreiber, and D.M. Kranz. 2012. A sensitivity scale for targeting T cells with chimeric antigen receptors (CARs) and bispecific T-cell Engagers (BiTEs). OncoImmunology. 1: 863–873. https://doi.org/10.4161/onci.20592
Tang, Q., S. Iyer, R. Lobbardi, J.C. Moore, H. Chen, C. Lareau, C. Hebert, M.L. Shaw, C. Neftel, M.L. Suva, et al. 2017. Dissecting hematopoietic and renal cell heterogeneity in adult zebrafish at single-cell resolution using RNA sequencing. J. Exp. Med. 214:2875–2887. https://doi.org/10.1084/jem.20170976
Taniguchi, E., K. Nishijo, A.T. McCleish, J.E. Michalek, M.H. Grayson, A.J. Infante, H.E. Abboud, R.D. Legallo, S.J. Qualman, B.P. Rubin, and C. Keller. 2008. PDGFR-A is a therapeutic target in alveolar rhabdomyosarcoma. Oncogene. 27:6550–6560. https://doi.org/10.1038/onc.2008.255
Thway, K., J. Selfe, E. Missiaglia, C. Fisher, and J. Shipley. 2011. Glypican-3 is expressed in rhabdomyosarcomas but not adult spindle cell and pleomorphic sarcomas. J. Clin. Pathol. 64:587–591. https://doi.org/10.1136/ jclinpath-2011-200071
To, T.L., A. Schepis, R. Ruiz-González, Q. Zhang, D. Yu, Z. Dong, S.R. Coughlin, and X. Shu. 2016. Rational Design of a GFP-Based Fluorogenic Caspase Reporter for Imaging Apoptosis In Vivo. Cell Chem. Biol. 23: 875–882. https://doi.org/10.1016/j.chembiol.2016.06.007
Waldman, A.D., J.M. Fritz, and M.J. Lenardo. 2020. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20:651–668. https://doi.org/10.1038/s41577-020-0306-5
Wachtel, M., T. Runge, I. Leuschner, S. Stegmaier, E. Koscielniak, J. Treuner, B. Odermatt, S. Behnke, F.K. Niggli, and B.W. Schäfer. 2006. Subtype and prognostic classification of rhabdomyosarcoma by immunohistochemistry. J. Clin. Oncol. 24:816–822. https://doi.org/10.1200/JCO.2005.03.4934
Wong, P., and E.G. Pamer. 2001. Cutting edge: antigen-independent CD8 T cell proliferation. J. Immunol. 166:5864–5868. https://doi.org/10.4049/jimmunol.166.10.5864
Wu, L., E. Seung, L. Xu, E. Rao, D.M. Lord, R.R. Wei, V. Cortez-Retamozo, B. Ospina, V. Posternak, G. Ulinski, et al. 2020. Trispecific antibodies enhance the therapeutic efficacy of tumor-directed T cells through T cell receptor co-stimulation. Nat. Can. 1:86–98. https://doi.org/10.1038/s43018-019-0004-z
Wunderlich, M., and J.C. Mulloy. 2016. MISTRG extends PDX modeling to favorable AMLs. Blood. 128:2111–2112. https://doi.org/10.1182/blood -2016-09-738757
Wunderlich, M., F.S. Chou, K.A. Link, B. Mizukawa, R.L. Perry, M. Carroll, and J.C. Mulloy. 2010. AML xenograft efficiency is significantly improved in NOD/SCID-IL2RG mice constitutively expressing human SCF, GM-CSF and IL-3. Leukemia. 24:1785–1788. https://doi.org/10.1038/leu.2010.158
Yan, C., D.C. Brunson, Q. Tang, D. Do, N.A. Iftimia, J.C. Moore, M.N. Hayes, A.M. Welker, E.G. Garcia, T.D. Dubash, et al. 2019. Visualizing Engrafted Human Cancer and Therapy Responses in Immunodeficient Zebrafish. Cell. 177:1903–1914.e14. https://doi.org/10.1016/j.cell.2019.04.004
Yan, C., D. Do, Q. Yang, D.C. Brunson, J.F. Rawls, and D.M. Langenau. 2020. Single-cell imaging of human cancer xenografts using adult immunodeficient zebrafish. Nat. Protoc. 15:3105–3128. https://doi.org/10.1038/ s41596-020-0372-y
Yohe, M.E., C.M. Heske, E. Stewart, P.C. Adamson, N. Ahmed, C.R. Antonescu, E. Chen, N. Collins, A. Ehrlich, R.L. Galindo, et al. 2019. Insights into pediatric rhabdomyosarcoma research: Challenges and goals. Pediatr. Blood Cancer. 66:e27869. https://doi.org/10.1002/pbc.27869
Zajc, C.U., M. Dobersberger, I. Schaffner, G. Mlynek, D. Pühringer, B. Salzer, K. Djinović-Carugo, P. Steinberger, A. De Sousa Linhares, N.J. Yang, et al. 2020. A conformation-specific ON-switch for controlling CAR T cells with an orally available drug. Proc. Natl. Acad. Sci. USA. 117: 14926–14935. https://doi.org/10.1073/pnas.1911154117