[en] Network approaches to psychopathology have become increasingly common in mental health research, with many theoretical and methodological developments quickly gaining traction. This article illustrates contemporary practices in applying network analytical tools, bridging the gap between network concepts and their empirical applications. We explain how we can use graphs to construct networks representing complex associations among observable psychological variables. We then discuss key network models, including dynamic networks, time-varying networks, network models derived from panel data, network intervention analysis, latent networks, and moderated models. In addition, we discuss Bayesian networks and their role in causal inference with a focus on cross-sectional data. After This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Disciplines :
Psychiatry
Author, co-author :
Briganti, Giovanni ; Université de Liège - ULiège > Département des sciences cliniques > Santé digitale ; University of Mons, Mons, Belgium
Scutari, Marco; Istituto Dalle Molle di Studi sull'Intelligenza Artificiale, Lugano, Switzerland
Epskamp, Sacha; National University of Singapore, Singapore, Singapore
Borsboom, Denny; University of Amsterdam, Amsterdam, Netherlands
Hoekstra, Ria; University of Amsterdam, Amsterdam, Netherlands
Fernandes Golino, Hudson; University of Virginia, Charlottesville, USA
Alexander, |
Christensen, P; Vanderbilt University, Nashville, USA
Morvan, Yannick; Université Paris Nanterre, Nanterre, France
Omid, |
Ebrahimi, V; University of Oxford, Oxford, UK
Giulio Costantini, |; University of Milan-Bicocca, Milano, Italy
Heeren, Alexandre; Université Catholique de Louvain, Louvain-la-Neuve, Belgium
De Ron, Jill; University of Amsterdam, Amsterdam, Netherlands
Bringmann, Laura; University of Groningen, Groningen, Netherlands
Huth, Karoline; University of Amsterdam, Amsterdam, Netherlands
Haslbeck, Jonas; University of Maastricht, Maastricht, Netherlands
Isvoranu, Adela-Maria; National University of Singapore, Singapore, Singapore
Maarten Marsman, |; University of Amsterdam, Amsterdam, Netherlands
Blanken, Tessa; University of Amsterdam, Amsterdam, Netherlands
Gilbert, Allison; University of Mons, Mons, Belgium
Teague, |
Henry, Rhine; University of Virginia, Charlottesville, USA
Acito, F., & Anderson, R. D. (1986). A simulation study of factor score indeterminacy. Journal of Marketing Research, 23(2), 111–118. https://doi.org/10.2307/3151658
Adolf, J. K., Voelkle, M. C., Brose, A., & Schmiedek, F. (2017). Capturing context-related change in emotional dynamics via fixed moderated time series analysis. Multivariate Behavioral Research, 52(4), 499–531. https://doi.org/10.1080/00273171.2017.1321978
Albers, C. J., & Bringmann, L. F. (2020). Inspecting gradual and abrupt changes in emotion dynamics with the time-varying change point autoregressive model. European Journal of Psychological Assessment, 36(3), 492–499. https://doi.org/10.1027/1015-5759/a000589
Bernasconi, A., Zanga, A., Lucas, P. J. F., Scutari, M., & Stella, F. (2023). Towards a transportable causal network model based on observational healthcare data. In Proceedings of the 2nd workshop on artificial intelligence for healthcare, 22nd international conference of the Italian association for artificial intelligence (AIxIA 2023) (pp. 67–82).
Bernstein, E. E., Phillips, K. A., Greenberg, J. L., Curtiss, J., Hoeppner, S. S., & Wilhelm, S. (2023). Mechanisms of cognitive-behavioral therapy effects on symptoms of body dysmorphic disorder: A network intervention analysis. Psychological Medicine, 53(6), 2531–2539. https://doi.org/10.1017/s0033291721004451
Blanchard, M. A., Contreras, A., Kalkan, R. B., & Heeren, A. (2023). Auditing the research practices and statistical analyses of the group-level temporal network approach to psychological constructs: A systematic scoping review. Behavior Research Methods, 55(2), 767–787. https://doi.org/10.3758/s13428-022-01839-y
Blanken, T. F., Isvoranu, A.-M., & Epskamp, S. (2022). Estimating network structures using model selection. In Network psychometrics with r (pp. 111–132). Routledge.
Blanken, T. F., Jansson-Fröjmark, M., Sunnhed, R., & Lancee, J. (2021). Symptom-specific effects of cognitive therapy and behavior therapy for insomnia: A network intervention analysis. Journal of Consulting and Clinical Psychology, 89(4), 364–370. https://doi.org/10.1037/ccp0000625
Blanken, T. F., Van Der Zweerde, T., Van Straten, A., Van Someren, E. J., Borsboom, D., & Lancee, J. (2019). Introducing network intervention analysis to investigate sequential, symptom-specific treatment effects: A demonstration in co-occurring insomnia and depression. Psychotherapy and Psychosomatics, 88(1), 52–54. https://doi.org/10.1159/000495045
Boker, S. M., Tiberio, S. S., & Moulder, R. G. (2018). Robustness of time delay embedding to sampling interval misspecification. In K. van Montfort, J. H. L. Oud, & M. C. Voelkle (Eds.), Continuous time modeling in the behavioral and related sciences (pp. 239–258). Springer. https://doi.org/10.1007/978-3-319-77219-6\text{\_}10
Borsboom, D. (2017a). Mental disorders, network models, and dynamical systems. In Philosophical issues in psychiatry IV: Psychiatric nosology DSM-5 (international perspectives in philosophy and psychiatry) (pp. 80–97). Oxford University Press.
Borsboom, D. (2017b). A network theory of mental disorders. World Psychiatry, 16(1), 5–13. https://doi.org/10.1002/wps.20375
Borsboom, D., & Cramer, A. O. (2013). Network analysis: An integrative approach to the structure of psychopathology. Annual Review of Clinical Psychology, 9(1), 91–121. https://doi.org/10.1146/annurev-clinpsy-050212-185608
Borsboom, D., Deserno, M. K., Rhemtulla, M., Epskamp, S., Fried, E. I., McNally, R. J., Robinaugh, D. J., Perugini, M., Dalege, J., Costantini, G., Isvoranu, A. M., Wysocki, A. C., van Borkulo, C. D., van Bork, R., & Waldorp, L. J. (2021a). Network analysis of multivariate data in psychological science. Nature Reviews Methods Primers, 1(1), 58. https://doi.org/10.1038/s43586-021-00055-w
Borsboom, D., Haslbeck, J. M. B., & Robinaugh, D. J. (2022). Systems-based approaches to mental disorders are the only game in town. World Psychiatry, 21(3), 420–422. https://doi.org/10.1002/wps.21004
Borsboom, D., van der Maas, H. L., Dalege, J., Kievit, R. A., & Haig, B. D. (2021b). Theory construction methodology: A practical framework for building theories in psychology. Perspectives on Psychological Science, 16(4), 756–766. https://doi.org/10.1177/1745691620969647
Boschloo, L., Bekhuis, E., Weitz, E. S., Reijnders, M., DeRubeis, R. J., Dimidjian, S., Dunner, D. L., Dunlop, B. W., Hegerl, U., Hollon, S. D., Jarrett, R. B., Kennedy, S. H., Miranda, J., Mohr, D., Simons, A. D., Parker, G., Petrak, F., Herpertz, S., Quilty, L. C., …, & Cuijpers, P. (2019a). The symptom-specific efficacy of antidepressant medication vs. cognitive behavioral therapy in the treatment of depression: Results from an individual patient data meta-analysis. World Psychiatry, 18(2), 183–191. https://doi.org/10.1002/wps.20630
Boschloo, L., Cuijpers, P., Karyotaki, E., Berger, T., Moritz, S., Meyer, B., & Klein, J. P. (2019b). Symptom-specific effectiveness of an internet-based intervention in the treatment of mild to moderate depressive symptomatology: The potential of network estimation techniques. Behaviour Research and Therapy, 122, 103440. https://doi.org/10.1016/j.brat.2019.103440
Briganti, G. (2022). On the use of bayesian artificial intelligence for hypothesis generation in psychiatry. Psychiatria Danubina, 34(8), 201–206.
Briganti, G., Kempenaers, C., Braun, S., Fried, E. I., & Linkowski, P. (2018). Network analysis of empathy items from the interpersonal reactivity index in 1973 young adults. Psychiatry Research, 265, 87–92. https://doi.org/10.1016/j.psychres.2018.03.082
Briganti, G., Scutari, M., & McNally, R. J. (2023). A tutorial on bayesian networks for psychopathology researchers. Psychological Methods, 28(4), 947–961. https://doi.org/10.1037/met0000479
Bringmann, L. F. (2021). Person-specific networks in psychopathology: Past, present, and future. Current opinion in psychology, 41, 59–64. https://doi.org/10.1016/j.copsyc.2021.03.004
Bringmann, L. F. (2024). The future of dynamic networks in research and clinical practice. World Psychiatry, 23(2), 288–289. https://doi.org/10.1002/wps.21209
Bringmann, L. F., Albers, C., Bockting, C., Borsboom, D., Ceulemans, E., Cramer, A., Epskamp, S., Eronen, M. I., Hamaker, E., Kuppens, P., Lutz, W., McNally, R. J., Molenaar, P., Tio, P., Voelkle, M. C., & Wichers, M. (2022). Psychopathological networks: Theory, methods and practice. Behaviour Research and Therapy, 149, 104011. https://doi.org/10.1016/j.brat.2021.104011
Bringmann, L. F., Ariens, S., Ernst, A. F., Snippe, E., & Ceulemans, E. (2024). Changing networks: Moderated idiographic psychological networks. advances. in/psychology, 2, e658296. https://doi.org/10.56296/aip00014
Bringmann, L. F., Elmer, T., Epskamp, S., Krause, R. W., Schoch, D., Wichers, M., Wigman, J. T., & Snippe, E. (2019). What do centrality measures measure in psychological networks? Journal of Abnormal Psychology, 128(8), 892–903. https://doi.org/10.1037/abn0000446
Bringmann, L. F., Ferrer, E., Hamaker, E. L., Borsboom, D., & Tuerlinckx, F. (2018). Modeling nonstationary emotion dynamics in dyads using a time-varying vector-autoregressive model. Multivariate Behavioral Research, 53(3), 293–314. https://doi.org/10.1080/00273171.2018.1439722
Bringmann, L. F., Hamaker, E. L., Vigo, D. E., Aubert, A., Borsboom, D., & Tuerlinckx, F. (2017). Changing dynamics: Time-varying autoregressive models using generalized additive modeling. Psychological Methods, 22(3), 409–425. https://doi.org/10.1037/met0000085
Bringmann, L. F., Helmich, M., Eronen, M., & Voelkle, M. (2023). Complex systems approaches to psychopathology. Oxford Textbook of psychopathology, 4, 103–122. https://doi.org/10.1093/med-psych/9780197542521.003.0005
Bringmann, L. F., Vissers, N., Wichers, M., Geschwind, N., Kuppens, P., Peeters, F., Borsboom, D., & Tuerlinckx, F. (2013). A network approach to psychopathology: New insights into clinical longitudinal data. PLoS One, 8(4), e60188. https://doi.org/10.1371/journal.pone.0060188
Burger, J., Hoekstra, R. H. A., Mansueto, A. C., & Epskamp, S. (2022b). Network estimation from time series and panel data. In Network psychometrics with r (pp. 169–192). Routledge.
Burger, J., Isvoranu, A., Lunansky, G., Haslbeck, J., Epskamp, S., Hoekstra, R. H. A., Fried, E. I., Borsboom, D., & Blanken, T. (2022a). Reporting standards for psychological network analyses in cross-sectional data. Psychological Methods, 28(4), 806–824. https://doi.org/10.1037/met0000471
Cabrieto, J., Tuerlinckx, F., Kuppens, P., Hunyadi, B., & Ceulemans, E. (2018). Testing for the presence of correlation changes in a multivariate time series: A permutation based approach. Scientific Reports, 8(1), 769. https://doi.org/10.1038/s41598-017-19067-2
Cheung, M. W.-L. (2015). Metasem: An r package for meta-analysis using structural equation modeling. Frontiers in Psychology, 5, 120910. https://doi.org/10.3389/fpsyg.2014.01521
Cheung, M. W.-L., & Chan, W. (2005). Meta-analytic structural equation modeling: A two-stage approach. Psychological Methods, 10(1), 40–64. https://doi.org/10.1037/1082-989x.10.1.40
Christensen, A. P., Garrido, L. E., & Golino, H. F. (2023). Unique variable analysis: A network psychometrics method to detect local dependence. Multivariate Behavioral Research, 58(6), 1165–1182. https://doi.org/10.1080/00273171.2023.2194606
Christensen, A. P., & Golino, H. F. (2021). On the equivalency of factor and network loadings. Behavior Research Methods, 53(4), 1563–1580. https://doi.org/10.3758/s13428-020-01500-6
Colombo, D., & Maathuis, M. H. (2014). Order-independent constraint-based causal structure learning. Journal of Machine Learning Research, 15, 3921–3962.
Costantini, G., Epskamp, S., Borsboom, D., Perugini, M., Mõttus, R., Waldorp, L. J., & Cramer, A. O. (2015). State of the art personality research: A tutorial on network analysis of personality data in r. Journal of Research in Personality, 54, 13–29. https://doi.org/10.1016/j.jrp.2014.07.003
Costantini, G., & Perugini, M. (2012). The definition of components and the use of formal indexes are key steps for a successful application of network analysis in personality psychology. European Journal of Personality, 26(4), 434–435. https://doi.org/10.1002/per.1869
Costantini, G., & Perugini, M. (2018). A framework for testing causality in personality research. European Journal of Personality, 32(3), 254–268. https://doi.org/10.1002/per.2150
Costantini, G., Richetin, J., Preti, E., Casini, E., Epskamp, S., & Perugini, M. (2019). Stability and variability of personality networks. a tutorial on recent developments in network psychometrics. Personality and Individual Differences, 136, 68–78. https://doi.org/10.1016/j.paid.2017.06.011
Cramer, A. O., Van Borkulo, C. D., Giltay, E. J., Van Der Maas, H. L., Kendler, K. S., Scheffer, M., & Borsboom, D. (2016). Major depression as a complex dynamic system. PLoS One, 11(12), e0167490. https://doi.org/10.1371/journal.pone.0167490
Cramer, A. O., Van der Sluis, S., Noordhof, A., Wichers, M., Geschwind, N., Aggen, S. H., Kendler, K. S., & Borsboom, D. (2012). Dimensions of normal personality as networks in search of equilibrium: You can’t like parties if you don’t like people. European Journal of Personality, 26(4), 414–431. https://doi.org/10.1002/per.1866
Curran, P. J., & Bauer, D. J. (2011). The disaggregation of within-person and between-person effects in longitudinal models of change. Annual Review of Psychology, 62(1), 583–619. https://doi.org/10.1146/annurev.psych.093008.100356
Dablander, F., Pichler, A., Cika, A., & Bacilieri, A. (2022). Anticipating critical transitions in psychological systems using early warning signals: Theoretical and practical considerations. Psychological Methods, 28(4), 765–790. https://doi.org/10.1037/met0000450
Dalege, J., Borsboom, D., Van Harreveld, F., Van den Berg, H., Conner, M., & Van der Maas, H. L. (2016). Toward a formalized account of attitudes: The causal attitude network (can) model. Psychological Review, 123(1), 2–22. https://doi.org/10.1037/a0039802
Davies, W., & Roache, R. (2017). Reassessing biopsychosocial psychiatry. The British Journal of Psychiatry, 210(1), 3–5. https://doi.org/10.1192/bjp.bp.116.182873
Deboeck, P. R., Montpetit, M. A., Bergeman, C., & Boker, S. M. (2009). Using derivative estimates to describe intraindividual variability at multiple time scales. Psychological Methods, 14(4), 367–386. https://doi.org/10.1080/00273171.2010.498294
De Haan-Rietdijk, S., Gottman, J. M., Bergeman, C. S., & Hamaker, E. L. (2016). Get over it! a multilevel threshold autoregressive model for state-dependent affect regulation. Psychometrika, 81(1), 217–241. https://doi.org/10.1007/s11336-014-9417-x
de Haan-Rietdijk, S., Kuppens, P., Bergeman, C. S., Sheeber, L., Allen, N., & Hamaker, E. (2017). On the use of mixed Markov models for intensive longitudinal data. Multivariate Behavioral Research, 52(6), 747–767. https://doi.org/10.1080/00273171.2017.1370364
de Ron, J., Robinaugh, D. J., Fried, E. I., Pedrelli, P., Jain, F. A., Mischoulon, D., & Epskamp, S. (2022). Quantifying and addressing the impact of measurement error in network models. Behaviour Research and Therapy, 157, 104163. https://doi.org/10.1016/j.brat.2022.104163
Ebrahimi, O. V. (2023). Systems-based thinking in psychology and the mental health sciences. Nature Reviews Psychology, 2(6), 332. https://doi.org/10.1038/s44159-023-00193-w
Ebrahimi, O. V., Borsboom, D., Hoekstra, R. H. A., Epskamp, S., Ostinelli, E. G., Bastiaansen, J. A., & Cipriani, A. (2024). Towards precision in the diagnostic profiling of patients: Leveraging symptom dynamics as a clinical characterisation dimension in the assessment of major depressive disorder. British Journal of Psychiatry, 224(5), 157–163. https://doi.org/10.1192/bjp.2024.19
Elliott-Graves, A. (2014). The role of target systems in scientific practice.
Epskamp, S. (2020). Psychometric network models from time-series and panel data. Psychometrika, 85(1), 206–231. https://doi.org/10.1007/s11336-020-09697-3
Epskamp, S., Borsboom, D., & Fried, E. I. (2018a). Estimating psychological networks and their accuracy: A tutorial paper. Behavior Research Methods, 50(1), 195–212. https://doi.org/10.3758/s13428-017-0862-1
Epskamp, S., & Fried, E. I. (2018). A tutorial on regularized partial correlation networks. Psychological Methods, 23(4), 617–634. https://doi.org/10.1037/met0000167
Epskamp, S., Fried, E. I., van Borkulo, C. D., Robinaugh, D. J., Marsman, M., Dalege, J., Rhemtulla, M., & Cramer, A. O. (2021). Investigating the utility of fixed-margin sampling in network psychometrics. Multivariate Behavioral Research, 56(2), 314–328. https://doi.org/10.1080/00273171.2018.1489771
Epskamp, S., Haslbeck, J. M. B., Isvoranu, A.-M., & Borkulo, C. D. V. (2022a). Pairwise Markov random fields. In Network psychometrics with R (pp. 93–110). Routledge.
Epskamp, S., Hoekstra, R. H. A., Burger, J., & Waldorp, L. J. (2022b). Longitudinal design choices: Relating data to analysis. In Network psychometrics with R (pp. 157–168). Routledge.
Epskamp, S., Kruis, J., & Marsman, M. (2017a). Estimating psychopathological networks: Be careful what you wish for. PLoS One, 12(6), e0179891. https://doi.org/10.1371/journal.pone.0179891
Epskamp, S., Rhemtulla, M., & Borsboom, D. (2017b). Generalized network psychometrics: Combining network and latent variable models. Psychometrika, 82(4), 904–927. https://doi.org/10.1007/s11336-017-9557-x
Epskamp, S., van Borkulo, C. D., van der Veen, D. C., Servaas, M. N., Isvoranu, A.-M., Riese, H., & Cramer, A. O. (2018b). Personalized network modeling in psychopathology: The importance of contemporaneous and temporal connections. Clinical Psychological Science, 6(3), 416–427. https://doi.org/10.1177/2167702617744325
Epskamp, S., Waldorp, L. J., Mõttus, R., & Borsboom, D. (2018c). The Gaussian graphical model in cross-sectional and time-series data. Multivariate Behavioral Research, 53(4), 453–480. https://doi.org/10.1080/00273171.2018.1454823
Epstein, J. M. (2008). Why model? The Journal of Artificial Societies and Social Simulation, 11(4), 12.
Finnemann, A., Borsboom, D., Epskamp, S., & van der Maas, H. L. (2021). The theoretical and statistical Ising model: A practical guide in r. Psych, 3(04), 593–617. https://doi.org/10.3390/psych3040039
Fishbein, J. N., Haslbeck, J. B., & Arch, J. J. (2023). Network intervention analysis of anxiety-related outcomes and processes of acceptance and commitment therapy (act) for anxious cancer survivors. Behaviour Research and Therapy, 162, 104266. https://doi.org/10.1016/j.brat.2023.104266
Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3–5), 75–174. https://doi.org/10.1016/j.physrep.2009.11.002
Freedman, A. M. (1995). The biopsychosocial paradigm and the future of psychiatry. Comprehensive Psychiatry, 36(6), 397–406. https://doi.org/10.1016/s0010-440x(95)90246-5
Freichel, R., Skjerdingstad, N., Mansueto, A. C., Epskamp, S., Hoffart, A., Johnson, S. U., & Ebrahimi, O. V. (2023). Use of substances to cope predicts posttraumatic stress disorder symptom persistence: Investigating patterns of interactions between symptoms and its maintaining mechanisms. Psychological Trauma: Theory, Research, Practice, and Policy. https://doi.org/10.1037/tra0001624
Fried, E. I. (2020). Lack of theory building and testing impedes progress in the factor and network literature. Psychological Inquiry, 31(4), 271–288. https://doi.org/10.1080/1047840x.2020.1853461
Fried, E. I. (2022). Studying mental health problems as systems, not syndromes. Current Directions in Psychological Science, 31(6), 500–508. https://doi.org/10.1177/09637214221114089
Fried, E. I., & Cramer, A. O. (2017). Moving forward: Challenges and directions for psychopathological network theory and methodology. Perspectives on Psychological Science, 12(6), 999–1020. https://doi.org/10.1177/1745691617705892
Fried, E. I., Eidhof, M., Palic, S., Costantini, G., Huisman-van Dijk, H. M., Bockting, C. L. H., Engelhard, I., Armour, C., Nielsen, A. B. S., & Karstoft, K. (2018). Replicability and generalizability of posttraumatic stress disorder (PTSD) networks: A cross-cultural multisite study of PTSD symptoms in four trauma patient samples. Clinical Psychological Science, 6(3), 335–351. https://doi.org/10.1177/2167702617745092
Fried, E. I., Epskamp, S., Veenman, M., & van Borkulo, C. D. (2022). Network stability, comparison, and replicability. In Network psychometrics with r (pp. 133–153). Routledge.
Fried, E. I., van Borkulo, C. D., Cramer, A. O., Boschloo, L., Schoevers, R. A., & Borsboom, D. (2017). Mental disorders as networks of problems: A review of recent insights. Social Psychiatry and Psychiatric Epidemiology, 52, 1–10. https://doi.org/10.1007/s00127-016-1319-z
Gibberd, A. J., & Nelson, J. D. (2017). Regularized estimation of piecewise constant Gaussian graphical models: The group-fused graphical lasso. Journal of Computational & Graphical Statistics, 26(3), 623–634. https://doi.org/10.1080/10618600.2017.1302340
Golino, H. F., Christensen, A. P., Moulder, R., Kim, S., & Boker, S. M. (2022). Modeling latent topics in social media using dynamic exploratory graph analysis: The case of the right-wing and left-wing trolls in the 2016 us elections. Psychometrika, 87(1), 156–187. https://doi.org/10.1007/s11336-021-09820-y
Golino, H. F., & Epskamp, S. (2017). Exploratory graph analysis: A new approach for estimating the number of dimensions in psychological research. PLoS One, 12(6), e0174035. https://doi.org/10.1371/journal.pone.0174035
Guest, O. (2024). What makes a good theory, and how do we make a theory good? Computational Brain & Behavior, 1–15. https://doi.org/10.1007/s42113-023-00193-2
Haig, B. D. (2013). Detecting psychological phenomena: Taking bottom-up research seriously. American Journal of Psychology, 126(2), 135–153. https://doi.org/10.5406/amerjpsyc.126.2.0135
Hamaker, E. L. (2012). Why researchers should think” within-person”: A paradigmatic rationale.
Hamaker, E. L., Grasman, R. P., & Kamphuis, J. H. (2016). Modeling bas dysregulation in bipolar disorder: Illustrating the potential of time series analysis. Assessment, 23(4), 436–446. https://doi.org/10.1177/1073191116632339
Hamaker, E. L., Kuiper, R. M., & Grasman, R. P. (2015). A critique of the cross-lagged panel model. Psychological Methods, 20(1), 102–116. https://doi.org/10.1037/a0038889
Hamaker, E. L., Zhang, Z., & van der Maas, H. L. (2009). Using threshold autoregressive models to study dyadic interactions. Psychometrika, 74(4), 727–745. https://doi.org/10.1007/s11336-009-9113-4
Haslbeck, J. M., & Ryan, O. (2022). Recovering within-person dynamics from psychological time series. Multivariate Behavioral Research, 57(5), 735–766. https://doi.org/10.1080/00273171.2021.1896353
Haslbeck, J. M., & Waldorp, L. J. (2018). How well do network models predict observations? On the importance of predictability in network models. Behavior Research Methods, 50(2), 853–861. https://doi.org/10.3758/s13428-017-0910-x
Haslbeck, J. M. B. (2022). Estimating group differences in network models using moderation analysis. Behavior Research Methods, 54(1), 522–540. https://doi.org/10.3758/s13428-021-01637-y
Haslbeck, J. M. B., Bringmann, L. F., & Waldorp, L. J. (2021). A tutorial on estimating time-varying vector autoregressive models. Multivariate Behavioral Research, 56(1), 120–149. https://doi.org/10.1080/00273171.2020.1743630
Haslbeck, J. M. B., Ryan, O., van der Maas, H. L., & Waldorp, L. J. (2022). Modeling change in networks. In Network psychometrics with R (pp. 193–209). Routledge.
Haslbeck, J. M. B., & Waldorp, L. J. (2015). Mgm: Estimating time-varying mixed graphical models in high-dimensional data. arXiv. preprint arXiv:1510.06871.
Haslbeck, J. M. B., & Waldorp, L. J. (2020). Mgm: Estimating time-varying mixed graphical models in high-dimensional data. Journal of Statistical Software, 93(8), 1–46. https://doi.org/10.18637/jss.v093.i08
Henry, T. R., Robinaugh, D. J., & Fried, E. I. (2021). On the control of psychological networks. Psychometrika, 87(1), 188–213. https://doi.org/10.1007/s11336-021-09796-9
Hinne, M., Gronau, Q. F., van den Bergh, D., & Wagenmakers, E.-J. (2020). A conceptual introduction to bayesian model averaging. Advances in Methods and Practices in Psychological Science, 3(2), 200–215. https://doi.org/10.1177/2515245919898657
Hoekstra, R. H. A., Epskamp, S., & Borsboom, D. (2023). Heterogeneity in individual network analysis: Reality or illusion? Multivariate Behavioral Research, 58(4), 762–786. https://doi.org/10.1080/00273171.2022.2128020
Hoekstra, R. H. A., Epskamp, S., Nierenberg, A. A., Borsboom, D., & McNally, R. J. (2024). Testing similarity in longitudinal networks: The individual network invariance test [advance online publication]. Psychological Methods.
Hoeting, J. A., Madigan, D., Raftery, A. E., & Volinsky, C. T. (1999). Bayesian model averaging: A tutorial. Statistical Science, 14(4), 382–417. https://doi.org/10.1214/ss/1009212519
Hoffart, A., Skjerdingstad, N., Freichel, R., Mansueto, A. C., Johnson, S. U., Epskamp, S., & Ebrahimi, O. V. (2023). Depressive symptoms and their mechanisms: An investigation of long-term patterns of interaction through a panel-network approach. Clinical Psychological Science, 21677026231208172. https://doi.org/10.1177/21677026231208172
Huth, K., de Ron, J., Luigjes, J., Goudriaan, A., Mohammadi, R., van Holst, R., Wagenmakers, E.-J., & Marsman, M. (2023a). Bayesian analysis of cross-sectional networks: A tutorial in R and jasp. Advances in Methods and Practices in Psychological Science, 6(4), 25152459231193334. https://doi.org/10.1177/25152459231193334
Huth, K., Keetelaar, S., Sekulovski, N., van den Bergh, D., & Marsman, M. (2023b). Simplifying bayesian analysis of graphical models for the social sciences with easybgm: A user-friendly R-package (preprint). PsyArXiv. https://doi.org/10.31234/osf.io/8f72p
Isvoranu, A.-M., & Epskamp, S. (2022). Which estimation method to choose in network psychometrics? Deriving guidelines for applied researchers. Psychological Methods, 28(4), 925–946. https://doi.org/10.1037/met0000439
Isvoranu, A.-M., Epskamp, S., & Cheung, M. W.-L. (2021). Network models of posttraumatic stress disorder: A meta-analysis. Journal of Abnormal Psychology, 130(8), 841–861. https://doi.org/10.1037/abn0000704
Isvoranu, A.-M., Epskamp, S., Waldorp, L., & Borsboom, D. (2022). Network psychometrics with r: A guide for behavioral and social scientists. Routledge.
Jeffreys, H. (1961). Theory of probability (3rd ed.). Oxford University Press.
Jones, P. J., Ma, R., & McNally, R. J. (2021b). Bridge centrality: A network approach to understanding comorbidity. Multivariate Behavioral Research, 56(2), 353–367. https://doi.org/10.1080/00273171.2019.1614898
Jones, P. J., Williams, D. R., & McNally, R. J. (2021a). Sampling variability is not nonreplication: A bayesian reanalysis of forbes, wright, markon, and krueger. Multivariate Behavioral Research, 56(2), 249–255. https://doi.org/10.1080/00273171.2020.1797460
Kan, K.-J., de Jonge, H., van der Maas, H. L., Levine, S. Z., & Epskamp, S. (2020). How to compare psychometric factor and network models. Journal of Intelligence, 8(4), 35. https://doi.org/10.3390/jintelligence8040035
Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90(430), 773–795. https://doi.org/10.2307/2291091
Keetelaar, S., Sekulovski, N., Borsboom, D., & Marsman, M. (2024). Comparing maximum likelihood and maximum pseudolikelihood estimators for the Ising model. advances. in/psychology, 2, e25745. https://doi.org/10.56296/aip00013
Kendler, K. S., Zachar, P., & Craver, C. (2011). What kinds of things are psychiatric disorders? Psychological Medicine, 41(6), 1143–1150. https://doi.org/10.1017/s0033291710001844
Kitson, N., Constantinou, A., Guo, Z., Liu, Y., & Chobtham, K. (2023). A survey of bayesian network structure learning. Artificial Intelligence Review, 56(8), 8721–8814. https://doi.org/10.1007/s10462-022-10351-w
Kruis, J., & Maris, G. (2016). Three representations of the Ising model. Scientific Reports, 6(1), 34175. https://doi.org/10.1038/srep34175
Lancee, J., Harvey, A., Morin, C., Ivers, H., van der Zweerde, T., & Blanken, T. (2022). Network intervention analyses of cognitive therapy and behavior therapy for insomnia: Symptom specific effects and process measures. Behaviour Research and Therapy, 153, 104100. https://doi.org/10.1016/j.brat.2022.104100
Lauritzen, S. L. (1996). In Graphical models (Vol. 17). Clarendon Press.
Lee, C. T., Kelley, S. W., Palacios, J., Richards, D., & Gillan, C. M. (2024). Estimating the prognostic value of cross-sectional network connectivity for treatment response in depression. Psychological Medicine, 54(2), 317–326. https://doi.org/10.1017/s0033291723001368
Lipsky, A. M., & Greenland, S. (2022). Causal directed acyclic graphs. JAMA, 327(11), 1083–1084. https://doi.org/10.1001/jama.2022.1816
Lunansky, G., Van Borkulo, C. D., Haslbeck, J. M. B., Van der Linden, M. A., Garay, C. J., Etchevers, M. J., & Borsboom, D. (2021). The mental health ecosystem: Extending symptom networks with risk and protective factors. Frontiers in Psychiatry, 12, 640658. https://doi.org/10.3389/fpsyt.2021.640658
Lütkepohl, H. (1991). Introduction to multiple time series analysis. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-02691-5
Maassen, E., D’Urso, E. D., Van Assen, M. A., Nuijten, M. B., De Roover, K., & Wicherts, J. M. (2023). The dire disregard of measurement invariance testing in psychological science. Psychological Methods. https://doi.org/10.1037/met0000624
Marsman, M., Borsboom, D., Kruis, J., Epskamp, S., van Bork, R. v., Waldorp, L., Maas, H. v. d., & Maris, G. (2018). An introduction to network psychometrics: Relating Ising network models to item response theory models. Multivariate Behavioral Research, 53(1), 15–35. https://doi.org/10.1080/00273171.2017.1379379
Marsman, M., & Haslbeck, J. M. B. (2023). Bayesian analysis of the ordinal Markov random field (preprint). PsyArXiv. https://doi.org/10.31234/osf.io/ukwrf
Marsman, M., Huth, K., Waldorp, L., & Ntzoufras, I. (2022). Objective bayesian edge screening and structure selection for networks of binary variables. Psychometrika, 87(1), 47–82. https://doi.org/10.1007/s11336-022-09848-8
Marsman, M., & Rhemtulla, M. (2022). Guest editors’ introduction to the special issue “network psychometrics in action”: Methodological innovations inspired by empirical problems. Psychometrika, 87, 1–11. https://doi.org/10.1007/s11336-022-09861-x
McNally, R. J. (2016). Can network analysis transform psychopathology? Behaviour Research and Therapy, 86, 95–104. https://doi.org/10.1016/j.brat.2016.06.006
Meredith, W., & Teresi, J. A. (2006). An essay on measurement and factorial invariance. Medical Care, 44(11), S69–S77. https://doi.org/10.1097/01.mlr.0000245438.73837.89
Mildiner Moraga, S., & Aarts, E. (2023). Go multivariate: Recommendations on bayesian multilevel hidden Markov models with categorical data. Multivariate Behavioral Research, 59, 1–29. https://doi.org/10.1080/00273171.2023.2205392
Millsap, R. E. (2012). Statistical approaches to measurement invariance. Routledge.
Molenaar, P. C. (2004). A manifesto on psychology as idiographic science: Bringing the person back into scientific psychology, this time forever. Measurement, 2(4), 201–218. https://doi.org/10.1207/s15366359mea0204_1
Olthof, M., Hasselman, F., Oude Maatman, F., Bosman, A. M. T., & Lichtwarck-Aschoff, A. (2023). Complexity theory of psychopathology. Journal of Psychopathology and Clinical Science, 132(3), 314–323. https://doi.org/10.1037/abn0000740
Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann.
Pearl, J. (1998). Graphs, causality, and structural equation models. Sociological Methods & Research, 27(2), 226–284. https://doi.org/10.1177/0049124198027002004
Pearl, J., Glymour, M., & Jewell, N. P. (2016). Causal inference in statistics: A primer. Wiley.
Peters, J., Janzing, D., & Schölkopf, B. (2017). Elements of causal inference: Foundations and learning algorithms. The MIT Press.
Robinaugh, D. J., Haslbeck, J. M., Ryan, O., Fried, E. I., & Waldorp, L. J. (2021). Invisible hands and fine calipers: A call to use formal theory as a toolkit for theory construction. Perspectives on Psychological Science, 16(4), 725–743. https://doi.org/10.1177/1745691620974697
Robinaugh, D. J., Haslbeck, J. M. B., Waldorp, L., Kossakowski, J., Fried, E. I., Millner, A., McNally, R. J., Ryan, O., de Ron, J., van der Maas, H., van Nes, E. H., Scheffer, M., Kendler, K. S., Borsboom, D. (2019). Advancing the network theory of mental disorders: A computational model of panic disorder. https://doi.org/10.31234/osf.io/km37w
Robinaugh, D. J., Millner, A. J., & McNally, R. J. (2016). Identifying highly influential nodes in the complicated grief network. Journal of Abnormal Psychology, 125(6), 747–757. https://doi.org/10.1037/abn0000181
Rohrer, J. M. (2018). Thinking clearly about correlations and causation: Graphical causal models for observational data. Advances in Methods and Practices in Psychological Science, 1(1), 27–42. https://doi.org/10.1177/2515245917745629
Ryan, O., Bringmann, L. F., & Schuurman, N. K. (2022). The challenge of generating causal hypotheses using network models. Structural Equation Modeling: A Multidisciplinary Journal, 29(6), 953–970. https://doi.org/10.1080/10705511.2022.2056039
Ryan, O., Dablander, F., & Haslbeck, J. M. B. (2023a). Towards a generative model for emotion dynamics.
Ryan, O., Haslbeck, J. M. B., & Robinaugh, D. J. (2023b). Improving treatments for mental disorders using computational models.
Ryan, O., Haslbeck, J. M. B., & Waldorp, L. (2023c). Non-stationarity in time-series analysis: Modeling stochastic and deterministic trends.
Scutari, M., & Denis, J.-B. (2021). Bayesian networks with examples in R (2nd). Chapman & Hall.
Scutari, M., Graafland, C. E., & Gutiérrez, J. M. (2019). Who learns better bayesian network structures: Accuracy and speed of structure learning algorithms. International Journal of Approximate Reasoning, 115, 235–253. https://doi.org/10.1016/j.ijar.2019.10.003
Sekulovski, N., Keetelaar, S., Haslbeck, J. M. B., & Marsman, M. (2023a). Sensitivity analysis of prior distributions in bayesian graphical modeling: Guiding informed prior choices for conditional independence testing (preprint). PsyArXiv. https://doi.org/10.31234/osf.io/6m7ca
Sekulovski, N., Keetelaar, S., Huth, K., Wagenmakers, E.-J., Van Bork, R., Van Den Bergh, D., & Marsman, M. (2023b). Testing conditional independence in psychometric networks: An analysis of three bayesian methods (preprint). PsyArXiv. https://doi.org/10.31234/osf.io/ch7a2
Shiffman, S., Stone, A. A., & Hufford, M. R. (2008). Ecological momentary assessment. Annual Review of Clinical Psychology, 4, 1–32. https://doi.org/10.1146/annurev.clinpsy.3.022806.091415
Smaldino, P. E. (2017). Models are stupid, and we need more of them. Computational social psychology, 311–331. https://doi.org/10.4324/9781315173726-14
Spirtes, P., & Glymour, C. (1991). An algorithm for fast recovery of sparse causal graphs. Social Science Computer Review, 9(1), 62–72. https://doi.org/10.1177/089443939100900106
Spirtes, P., Glymour, C. N., & Scheines, R. (2000). Causation, prediction, and search. MIT press.
Swanson, T. J. (2020). Modeling moderators in psychological networks [doctoral dissertation]. Retrieved November 14, 2023, from https://www.proquest.com/openview/d151ab6b93ad47e3f0d5e59d7b6fd3d3
Telford, C., McCarthy-Jones, S., Corcoran, R., & Rowse, G. (2012). Experience sampling methodology studies of depression: The state of the art. Psychological Medicine, 42(6), 1119–1129. https://doi.org/10.1017/s0033291711002200
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society - Series B: Statistical Methodology, 58(1), 267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
van Bork, R., Rhemtulla, M., Waldorp, L. J., Kruis, J., Rezvanifar, S., & Borsboom, D. (2021). Latent variable models and networks: Statistical equivalence and testability. Multivariate Behavioral Research, 56(2), 175–198. https://doi.org/10.1080/00273171.2019.1672515
Van Borkulo, C. D., Borsboom, D., Epskamp, S., Blanken, T. F., Boschloo, L., Schoevers, R. A., & Waldorp, L. J. (2014). A new method for constructing networks from binary data. Scientific Reports, 4(1), 5918. https://doi.org/10.1038/srep05918
Van Borkulo, C. D., van Bork, R., Boschloo, L., Kossakowski, J. J., Tio, P., Schoevers, R. A., Borsboom, D., & Waldorp, L. J. (2022). Comparing network structures on three aspects: A permutation test. Psychological Methods, 28(6), 1273–1285. https://doi.org/10.1037/met0000476
van de Leemput, I. A., Wichers, M., Cramer, A. O., Borsboom, D., Tuerlinckx, F., Kuppens, P., Van Nes, E. H., Viechtbauer, W., Giltay, E. J., Aggen, S. H., Derom, C., Jacobs, N., Kendler, K. S., van der Maas, H. L. J., Neale, M. C., Peeters, F., Thiery, E., Zachar, P., & Scheffer, M. (2014). Critical slowing down as early warning for the onset and termination of depression. Proceedings of the National Academy of Sciences, 111(1), 87–92. https://doi.org/10.1073/pnas.1312114110
Van Der Maas, H. L., Dolan, C. V., Grasman, R. P., Wicherts, J. M., Huizenga, H. M., & Raijmakers, M. E. (2006). A dynamical model of general intelligence: The positive manifold of intelligence by mutualism. Psychological Review, 113(4), 842–861. https://doi.org/10.1037/0033-295x.113.4.842
van der Tuin, S., Hoekstra, R. H. A., Booij, S. H., Oldehinkel, A. J., Wardenaar, K. J., van den Berg, D., Borsboom, D., & Wigman, J. T. (2023). Relating stability of individual dynamical networks to change in psychopathology. PLoS One, 18(11), e0293200. https://doi.org/10.1371/journal.pone.0293200
van der Wal, J., van Borkulo, C., Haslbeck, J., Slofstra, C., Klein, N., Blanken, T., Deserno, M., Lok, A., Nauta, M., & Bockting, C. (2022). Effects of various relapse prevention strategies on affect dynamics and its impact on depressive relapse using network analysis: A randomized controlled trial. Behaviour Research and Therapy.
van Dongen, N., van Bork, R., Finnemann, A., van der Maas, H., Robinaugh, D., Haslbeck, J., de Ron, J., Sprenger, J., & Borsboom, D. (2022). Productive explanation: A framework for evaluating explanations in psychological science.
Wagenmakers, E.-J., Morey, R. D., & Lee, M. D. (2016). Bayesian benefits for the pragmatic researcher. Current Directions in Psychological Science, 25(3), 169–176. https://doi.org/10.1177/0963721416643289
Waldorp, L., & Marsman, M. (2022). Relations between networks, regression, partial correlation, and the latent variable model. Multivariate Behavioral Research, 57(6), 994–1006. https://doi.org/10.1080/00273171.2021.1938959
Wang, S. B., Robinaugh, D. J., Millner, A., Fortgang, R., & Nock, M. (2023). Mathematical and computational modeling of suicide as a complex dynamical system (preprint). PsyArXiv. https://doi.org/10.31234/osf.io/b29cs
Watkins, M. W. (2018). Exploratory factor analysis: A guide to best practice. Journal of Black Psychology, 44(3), 219–246. https://doi.org/10.1177/0095798418771807
Wichers, M., Groot, P. C., Psychosystems, ESM Group, EWS Group. (2016). Critical slowing down as a personalized early warning signal for depression. Psychotherapy and Psychosomatics, 85(2), 114–116. https://doi.org/10.1159/000441458
Wichers, M., Riese, H., Hodges, T. M., Snippe, E., & Bos, F. M. (2021). A narrative review of network studies in depression: What different methodological approaches tell us about depression. Frontiers in Psychiatry, 12, 719490. https://doi.org/10.3389/fpsyt.2021.719490
Wichers, M., Schreuder, M. J., Goekoop, R., & Groen, R. N. (2019). Can we predict the direction of sudden shifts in symptoms? Transdiagnostic implications from a complex systems perspective on psychopathology. Psychological Medicine, 49(3), 380–387. https://doi.org/10.1017/S0033291718002064
Wichers, M., Smit, A. C., & Snippe, E. (2020). Early warning signals based on momentary affect dynamics can expose nearby transitions in depression: A confirmatory single-subject time-series study. Journal for person-oriented research, 6(1), 1–15. https://doi.org/10.17505/jpor.2020.22042
Williams, D. R., & Mulder, J. (2020). Bayesian hypothesis testing for Gaussian graphical models: Conditional independence and order constraints. Journal of Mathematical Psychology, 99, 102441. https://doi.org/10.1016/j.jmp.2020.102441
Williams, D. R., & Rast, P. (2020). Back to the basics: Rethinking partial correlation network methodology. British Journal of Mathematical and Statistical Psychology, 73(2), 187–212. https://doi.org/10.1111/bmsp.12173
Wood, S. N. (2006). Generalized additive models: An introduction with R. Chapman; Hall/CRC.
Zucchini, W., & MacDonald, I. L. (2009). Hidden Markov models for time series: An introduction using R. Chapman; Hall/CRC.