Bariatric surgery; Machine learning; Risk prediction; Complications; Mobile health monitoring
Abstract :
[en] Background Traditional risk models, such as POSSUM and OS-MS, have limited accuracy in predicting complications after bariatric surgery. Machine learning (ML) offers new opportunities for personalized risk assessment by incorporating artificial intelligence (AI). This study aimed to develop and evaluate two ML-based models: one using preoperative clinical data and another integrating postoperative data from a mobile application. Methods A prospective study was conducted on 104 bariatric surgery patients at Saint-Pierre University Hospital (September 2022-July 2023). Patients used the "Care4Today" mobile app for real-time postoperative monitoring. Data were analyzed using ML algorithms, with performance evaluated via cross-validation, accuracy, F1 scores, and AUC. A preoperative model used demographic and surgical data, while a postoperative model incorporated symptoms and mobile app-generated alerts. Results A total of 104 patients were included. The preoperative model, utilizing Extreme linear discriminant analysis, achieved an accuracy of 75% and an AUC of 64.7%. The postoperative model, using supervised logistic regression with six selected features, demonstrated improved performance with an accuracy of 77.4% and an AUC of 71.5%. A user interface was developed for clinical implementation. Conclusions ML-based predictive models, particularly those integrating dynamic postoperative data, improve risk stratification in bariatric surgery. Real-time mobile health monitoring enhances early complication detection, offering a personalized, adaptable approach beyond traditional static risk models. Future validation with larger datasets is necessary to confirm generalizability.
Disciplines :
Surgery
Author, co-author :
Farinella, Eleonora; Centre Hospitalier Universitaire de Saint-Pierre, Brussels, Belgium ; University of Mons, Mons, Belgium ; Centre Hospitalier Universitaire de Saint-Pierre, Brussels, Belgium ; University of Mons, Mons, Belgium
Papakonstantinou, Dimitrios; Centre Hospitalier Universitaire de Saint-Pierre, Brussels, Belgium ; Centre Hospitalier Universitaire de Saint-Pierre, Brussels, Belgium
Koliakos, Nikolaos; Centre Hospitalier Universitaire de Saint-Pierre, Brussels, Belgium ; Centre Hospitalier Universitaire de Saint-Pierre, Brussels, Belgium
Maréchal, Marie-Thérèse; Centre Hospitalier Universitaire de Saint-Pierre, Brussels, Belgium ; Centre Hospitalier Universitaire de Saint-Pierre, Brussels, Belgium
Poras, Mathilde; Centre Hospitalier Universitaire de Saint-Pierre, Brussels, Belgium ; Centre Hospitalier Universitaire de Saint-Pierre, Brussels, Belgium
Pau, Luca; Centre Hospitalier Universitaire de Saint-Pierre, Brussels, Belgium ; Centre Hospitalier Universitaire de Saint-Pierre, Brussels, Belgium
Amel, Otmane; University of Mons, Mons, Belgium ; University of Mons, Mons, Belgium
Mahmoudi, Sidi; University of Mons, Mons, Belgium ; University of Mons, Mons, Belgium
Briganti, Giovanni ; Université de Liège - ULiège > Département des sciences cliniques > Santé digitale ; University of Mons, Mons, Belgium ; University of Mons, Mons, Belgium
Language :
English
Title :
Integrating Machine Learning and Dynamic Digital Follow-up for Enhanced Prediction of Postoperative Complications in Bariatric Surgery
E.J. DeMaria D. Portenier L. Wolfe Obesity surgery mortality risk score: proposal for a clinically useful score to predict mortality risk in patients undergoing gastric bypass Surg Obes Relat Dis 3 134 140 10.1016/j.soard.2007.01.005 17386394
G.P. Copeland D. Jones M. Walters POSSUM: a scoring system for surgical audit Br J Surg 78 355 360 1:STN:280:DyaK3M3hsFCnuw%3D%3D 10.1002/bjs.1800780327 2021856
D.A. Gilhooly M. Cole S.R. Moonesinghe The evaluation of risk prediction models in predicting outcomes after bariatric surgery: a prospective observational cohort pilot study Perioper Med (Lond) 7 6 10.1186/s13741-018-0088-5 29651334
A. Sheikhtaheri A. Orooji A. Pazouki M. Beitollahi A Clinical decision support system for predicting the early complications of one-anastomosis gastric bypass surgery Obes Surg 29 2276 2286 10.1007/s11695-019-03849-w 31028626
Y. Cao X. Fang J. Ottosson E. Näslund E. Stenberg A comparative study of machine learning algorithms in predicting severe complications after bariatric surgery J Clin Med 8 10.3390/jcm8050668 31083643 6571760 668
C. Yang M. Kessler N. Taebi M. Hetjens C. Reissfelder M. Otto et al. Remote follow-up with a mobile application is equal to traditional outpatient follow-up after bariatric surgery: the BELLA pilot trial Obes Surg 33 1702 1709 10.1007/s11695-023-06587-2 37081252 10119000
I. Lopez-Arevalo E. Aldana-Bobadilla A. Molina-Villegas H. Galeana-Zapién V. Muñiz-Sanchez S. Gausin-Valle A memory-efficient encoding method for processing mixed-type data on machine learning Entropy (Basel) 22 1391 10.3390/e22121391 33316972
Y. Jung J. Hu A K-fold averaging cross-validation procedure J Nonparametr Stat 27 167 179 10.1080/10485252.2015.1010532 27630515 5019184
S. Wang Y. Dai J. Shen J. Xuan Research on expansion and classification of imbalanced data based on SMOTE algorithm Sci Rep 11 24039 1:CAS:528:DC%2BB3MXislOgur%2FO 10.1038/s41598-021-03430-5 34912009 8674253
T. Razzaghi I. Safro J. Ewing E. Sadrfaridpour J.D. Scott Predictive models for bariatric surgery risks with imbalanced medical datasets Ann Oper Res 280 1 18 10.1007/s10479-019-03156-8
N. Migenda R. Möller W. Schenck Adaptive dimensionality reduction for neural network-based online principal component analysis PLoS ONE 16 1:CAS:528:DC%2BB3MXnvF2itrY%3D 10.1371/journal.pone.0248896 33784333 8009402 e0248896
P.A. Clavien J. Barkun M.L. de Oliveira J.N. Vauthey D. Dindo R.D. Schulick et al. The Clavien-Dindo classification of surgical complications: five-year experience Ann Surg 250 187 196 10.1097/SLA.0b013e3181b13ca2 19638912
A.M. Hassan A. Rajesh M. Asaad J.A. Nelson J.H. Coert B.J. Mehrara et al. Artificial intelligence and machine learning in prediction of surgical complications: current state, applications, and implications Am Surg 89 25 30 10.1177/00031348221101488 35562124
W.T. Stam L.K. Goedknegt E.W. Ingwersen L.J. Schoonmade E.R.J. Bruns F. Daams The prediction of surgical complications using artificial intelligence in patients undergoing major abdominal surgery: a systematic review Surgery 171 1014 1021 10.1016/j.surg.2021.10.002 34801265
A.S. Mierzwa V. Mocanu G. Marcil J. Dang N.J. Switzer D.W. Birch et al. Characterizing timing of postoperative complications following elective Roux-en-Y gastric bypass and sleeve gastrectomy Obes Surg 31 4492 4501 10.1007/s11695-021-05638-w 34374931 8353221
N. Zucchini E. Capozzella M. Giuffrè M. Mastronardi B. Casagranda S.L. Crocè et al. Advanced non-linear modeling and explainable artificial intelligence techniques for predicting 30-day complications in bariatric surgery: a single-center study OBES SURG 34 3627 3638 10.1007/s11695-024-07501-0 39271585
C.R. Daigle S.A. Brethauer C. Tu A.T. Petrick J.M. Morton P.R. Schauer et al. Which postoperative complications matter most after bariatric surgery? Prioritizing quality improvement efforts to improve national outcomes Surg Obes Relat Dis 14 652 657 10.1016/j.soard.2018.01.008 29503096
K. Ho R. Hawa S. Wnuk A. Okrainec T. Jackson S. Sockalingam The psychosocial effects of perioperative complications after bariatric surgery Psychosomatics 59 452 463 10.1016/j.psym.2018.03.005 29699779
P. Groene J. Eisenlohr C. Zeuzem S. Dudok K. Karcz K. Hofmann-Kiefer Postoperative nausea and vomiting in bariatric surgery in comparison to non-bariatric gastric surgery Wideochir Inne Tech Maloinwazyjne 14 90 95 30766634
S. Suh M. Helm T.L. Kindel M.I. Goldblatt J.C. Gould R.M. Higgins The impact of nausea on post-operative outcomes in bariatric surgery patients Surg Endosc 34 3085 3091 10.1007/s00464-019-07058-5 31388805