SUSTAINED COGNITIVE DECLINE IN MULTIPLE SCLEROSIS: INVESTIGATING THE ROLE OF WHITE MATTER LESION LOAD USING AN AI-DRIVEN BRAIN IMAGING APPROACH. - 2025
artificial intelligence; cognitive impairment; multiple sclerosis; neuroimaging; white matter lesion load; Humans; Male; Female; Middle Aged; Magnetic Resonance Imaging/methods; Adult; Disease Progression; Brain/diagnostic imaging; Brain/pathology; Multiple Sclerosis/diagnostic imaging; Multiple Sclerosis/complications; Multiple Sclerosis/pathology; White Matter/diagnostic imaging; White Matter/pathology; Cognitive Dysfunction/diagnostic imaging; Cognitive Dysfunction/etiology; Cognitive Dysfunction/pathology; Artificial Intelligence; Brain; Cognitive Dysfunction; Magnetic Resonance Imaging; White Matter; Psychiatry and Mental Health
Abstract :
[en] [en] BACKGROUND: Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease of the central nervous system, where cognitive impairment can occur even without physical disability. The underlying mechanisms remain poorly understood. This study investigates the role of white matter lesion load (WMLL) in sustained cognitive decline (SCD) in a real-life MS cohort, using an artificial intelligence(AI)-based brain imaging approach.
METHODS: Patients from the CHU Helora MS database with ≥3 SDMT assessments and serial brain MRIs were included. SCD was defined as a ≥4-point or ≥10% SDMT drop, confirmed 6 months later. Patients were stratified into two groups: those with SCD (COG) and those without (N-COG). WMLL was measured using a AI-based model that provides segmentation masks. Lesion volume was calculated by multiplying segmented voxels by voxel size.
RESULTS: Of 109 eligible patients, 43 met inclusion criteria. Seven showed SCD; 36 did not. Imaging data were available for 5 COG and 21 N-COG patients. There was no significant difference in WMLL or its progression between patients with and without SCD. Fewer than half of the patients in the COG group showed an increase in WMLL over time, and those who did were older than the group average. WMLL changes were not a reliable marker of SCD. Consistent with previous findings, the COG group included more males, and disease control appeared more challenging. Vascular pathology may be misclassified by segmentation algorithms, which partially explain why the two patients with WMLL progression were older. Gray matter was not assessed, though it may play a key role in this phenomenon.
CONCLUSION: SCD did not consistently correlate with WMLL progression. Affected patients were predominantly male, consistent with a more aggressive disease course. WMLL may also be influenced by age-related factors. Alternative imaging biomarkers are needed to explain SCD in MS.
Disciplines :
Neurology
Author, co-author :
Tota, Vito; Department of Neurology, Centres Hospitaliers Universitaires HELORA, Mons, Belgium
Mehuys, Astrid; Department of Neuroscience, Research Institute for Health Science and Technology, University of Mons, Mons, Belgium
Vansnick, Tanguy; Computer Science, Software and Artificial Intelligence Unit (ILIA), University of Mons, Mons, Belgium
Amel, Otmane; Department of Computer Science, University of Tiaret, Tiaret, Algeria
Chahbar, Fatma; Department of Computer Science, University of Tiaret, Tiaret, Algeria ; Laboratoire de Génie Energétique et Génie Informatique (L2GEGI), University of Tiaret, Tiaret, Algeria
Mahmoudi, Lamia; Department of Computer Science, University of Tiaret, Tiaret, Algeria ; Laboratoire de Génie Energétique et Génie Informatique (L2GEGI), University of Tiaret, Tiaret, Algeria
Mahmoudi, Sidi Ahmed; IMT Nord Europe, Institut Mines-Télécom, Center for Digital Systems, Lille, France
Briganti, Giovanni ; Université de Liège - ULiège > Département des sciences cliniques > Santé digitale ; Department of Computational Medicine and Neuropsychiatry, Faculty of Medicine, University of Mons, Mons, Belgium
Ris, Laurence; Department of Computational Medicine and Neuropsychiatry, Faculty of Medicine, University of Mons, Mons, Belgium
Mahmoudi, Said; Department of Computational Medicine and Neuropsychiatry, Faculty of Medicine, University of Mons, Mons, Belgium
Language :
English
Title :
SUSTAINED COGNITIVE DECLINE IN MULTIPLE SCLEROSIS: INVESTIGATING THE ROLE OF WHITE MATTER LESION LOAD USING AN AI-DRIVEN BRAIN IMAGING APPROACH.
Publication date :
September 2025
Journal title :
Psychiatria Danubina
ISSN :
0353-5053
Publisher :
Medicinska Naklada Zagreb, Croatia
Volume :
37
Issue :
Suppl 1
Pages :
321 - 329
Peer reviewed :
Peer Reviewed verified by ORBi
Funding text :
This publication acknowledges the financial support of the European Union and Wallonia through the FEDER program for the project titled \u201CMedReSyst_UMONS_AI for Brain\u201D. The funding sources had no role in the design ofthe study, data collection, analysis, interpretation of results, writing ofthe manuscript, or decision to publish.
Absinta, M., Lassmann, H., & Trapp, B. D. (2020). Mechanisms underlying progression in multiple sclerosis. Current Opinion in Neurology, 33(3), 277-285. https://doi.org/10.1097/WCO.0000000000000818
Amato, M. P., Hakiki, B., Goretti, B., Rossi, F., Stromillo, M. L., Giorgio, A., Roscio, M., Ghezzi, A., Guidi, L., Bartolozzi, M. L., Portaccio, E., & De Stefano, N. (2012). Association of MRI metrics and cognitive impairment in radiologically isolated syndromes. Neurology, 78(5), 309-314. https://doi.org/10.1212/WNL. 0b013e31824528c9
Amato, M. P., Portaccio, E., Goretti, B., Zipoli, V., Iudice, A., Pina, D. D., Malentacchi, G., Sabatini, S., Annunziata, P., Falcini, M., Mazzoni, M., Mortilla, M., Fonda, C., De Stefano, N., & TuSCIMS Study Group. (2010). Relevance of cognitive deterioration in early relapsing-remitting MS : A 3-year follow-up study. Multiple Sclerosis Journal, 16(12), 1474-1482. https://doi.org/10.1177/1352458510380089
Amin, M., Martínez-Heras, E., Ontaneda, D., & Prados Carrasco, F. (2024). Artificial Intelligence and Multiple Sclerosis. Current Neurology and Neuroscience Reports, 24(8), 233-243. https://doi.org/10.1007/s11910-024-01354-x
Atiyeh, C., Garjani, A., Gilmartin, C., Tench, C., Das Nair, R., Evangelou, N., & Taylor, L. A. (2025). Medication use is associated with cognitive deficits in people with multiple sclerosis. Multiple Sclerosis and Related Disorders, 97, 106386. https://doi.org/10.1016/j.msard.2025.106386
Azevedo, C. J., Cen, S. Y., Khadka, S., Liu, S., Kornak, J., Shi, Y., Zheng, L., Hauser, S. L., & Pelletier, D. (2018). Thalamic atrophy in multiple sclerosis: A magnetic resonance imaging marker of neurodegeneration throughout disease: Thalamic Atrophy in MS. Annals of Neurology, 83(2), 223-234. https://doi.org/10.1002/ana.25150
Benedict, R., Duquin, J., Jurgensen, S., Rudick, R., Feitcher, J., Munschauer, F., Panzara, M., & Weinstock- Guttman, B. (2008). Repeated assessment of neuropsychological deficits in multiple sclerosis using the Symbol Digit Modalities Test and the MS Neuropsychological Screening Questionnaire. Multiple Sclerosis Journal, 14(7), 940-946. https://doi.org/10.1177/1352458508090923
Benedict, R. H., Amato, M. P., Boringa, J., Brochet, B., Foley, F., Fredrikson, S., Hamalainen, P., Hartung, H., Krupp, L., Penner, I., Reder, A. T., & Langdon, D. (2012). Brief International Cognitive Assessment for MS (BICAMS) : International standards for validation. BMC Neurology, 12(1), 55. https://doi.org/10.1186/1471-2377- 12-55
Benedict, R. H. B., Amato, M. P., DeLuca, J., & Geurts, J. J. G. (2020). Cognitive impairment in multiple sclerosis: Clinical management, MRI, and therapeutic avenues. The Lancet Neurology, 19(10), 860-871. https://doi.org/10.1016/S1474-4422(20)30277-5
Benedict, R. H. B., DeLuca, J., Enzinger, C., Geurts, J. J. G., Krupp, L. B., & Rao, S. M. (2017). Neuropsychology of Multiple Sclerosis : Looking Back and Moving Forward. Journal of the International Neuropsychological Society, 23(9-10), 832-842. https://doi.org/10.1017/S1355617717000959
Benedict, R. H. B., & Zivadinov, R. (2011). Risk factors for and management of cognitive dysfunction in multiple sclerosis. Nature Reviews Neurology, 7(6), 332-342. https://doi.org/10.1038/nrneurol.2011.61
Benedict, R. H., DeLuca, J., Phillips, G., LaRocca, N., Hudson, L. D., Rudick, R., & Multiple Sclerosis Outcome Assessments Consortium. (2017). Validity of the Symbol Digit Modalities Test as a cognition performance outcome measure for multiple sclerosis. Multiple Sclerosis Journal, 23(5), 721-733. https://doi.org/10.1177/1352458517690821
Bergmann, C., Becker, S., Watts, A., Sullivan, C., Wilken, J., Golan, D., Zarif, M., Bumstead, B., Buhse, M., Kaczmarek, O., Covey, T. J., Doniger, G. M., Penner, I.-K. , Hancock, L. M., Bogaardt, H., Barrera, M. A., Morrow, S., & Gudesblatt, M. (2023). Multiple sclerosis and quality of life : The role of cognitive impairment on quality of life in people with multiple sclerosis. Multiple Sclerosis and Related Disorders, 79, 104966. https://doi.org/10.1016/j.msard.2023.104966
Brugnara, G., Isensee, F., Neuberger, U., Bonekamp, D., Petersen, J., Diem, R., Wildemann, B., Heiland, S., Wick, W., Bendszus, M., Maier-Hein, K., & Kickingereder, P. (2020). Automated volumetric assessment with artificial neural networks might enable a more accurate assessment of disease burden in patients with multiple sclerosis. European Radiology, 30(4), 2356-2364. https://doi.org/10.1007/s00330-019-06593-y
Bsteh, G., Hegen, H., Teuchner, B., Amprosi, M., Berek, K., Ladstätter, F., Wurth, S., Auer, M., Di Pauli, F., Deisenhammer, F., & Berger, T. (2019). Peripapillary retinal nerve fibre layer as measured by optical coherence tomography is a prognostic biomarker not only for physical but also for cognitive disability progression in multiple sclerosis. Multiple Sclerosis Journal, 25(2), 196-203. https://doi. org/10.1177/1352458517740216
Calabrese, M., Poretto, V., Favaretto, A., Alessio, S., Bernardi, V., Romualdi, C., Rinaldi, F., Perini, P., & Gallo, P. (2012). Cortical lesion load associates with progression of disability in multiple sclerosis. Brain, 135(10), 2952-2961. https://doi.org/10.1093/brain/aws246
Costers, L., Gielen, J., Eelen, P. L., Schependom, J. V., Laton, J., Remoortel, A. V., Vanzeir, E., Wijmeersch, B. V., Seeldrayers, P., Haelewyck, M.-C., D’Haeseleer, M., D’hooghe, M.-B., Langdon, D., & Nagels, G. (2017). Does including the full CVLT-II and BVMT-R improve BICAMS? Evidence from a Belgian (Dutch) validation study. Multiple Sclerosis and Related Disorders, 18, 33-40. https://doi.Org/10.1016/j.msard.2017.08.018
Dereskewicz, E., La Rosa, F., Dos Santos Silva, J., Sizer, E., Kohli, A., Wynen, M., Mullins, W. A., Maggi, P., Levy, S., Onyemeh, K., Ayci, B., Solomon, A. J., Assländer, J., Al-Louzi, O., Reich, D. S., Sumowski, J., & Beck, E. S. (2025). FLAMeS: A Robust Deep Learning Model for Automated Multiple Sclerosis Lesion Segmentation. https://doi.org/10.1101/2025.05.19.25327707
Farghaly, M., Langdon, D. W., Shalaby, N. M., Shehata, H. S., Abokrysha, N. T., Hassan, A., Hegazy, M. I., Elmazny, A., Ahmed, S., Shaheen, S., Othman, A. S., Yacoub, O., & Kishk, N. A. (2021). Reliability and validity of Arabic version of the brief international cognitive assessment for multiple sclerosis: Egyptian dialect. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery, 57(1), 51. https://doi.org/10.1186/s41983- 021-00303-6
Filser, M., Schreiber, H., Pöttgen, J., Ullrich, S., Lang, M., & Penner, I. K. (2018). The Brief International Cognitive Assessment in Multiple Sclerosis (BICAMS) : Results from the German validation study. Journal of Neurology, 265(11), 2587-2593. https://doi.org/10.1007/s00415-018-9034-1
Granberg, T., Fan, Q., Treaba, C. A., Ouellette, R., Herranz, E., Mangeat, G., Louapre, C., Cohen-Adad, J., Klawiter, E. C., Sloane, J. A., & Mainero, C. (2017). In vivo characterization of cortical and white matter neuroaxonal pathology in early multiple sclerosis. Brain, 140(11), 2912-2926. https://doi.org/10.1093/brain/awx247
Guimarães, J., & Sá, M. J. (2012). Cognitive Dysfunction in Multiple Sclerosis. Frontiers in Neurology, 3. https://doi.org/10.3389/fneur.2012.00074
Hämäläinen, P., Leo, V., Therman, S., & Ruutiainen, J. (2021). Validation of the Finnish version of the Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS) and evaluation of the applicability of the Multiple Sclerosis Neuropsychological Questionnaire (MSNQ) and the Fatigue Scale for Motor and Cognitive Functions (FSMC). Brain and Behavior, 11(6), e02087. https://doi.org/10.1002/brb3.2087
Harrison, D. M., Roy, S., Oh, J., Izbudak, I., Pham, D., Courtney, S., Caffo, B., Jones, C. K., Van Zijl, P., & Calabresi, P. A. (2015). Association of Cortical Lesion Burden on 7-T Magnetic Resonance Imaging With Cognition and Disability in Multiple Sclerosis. JAMA Neurology, 72(9), 1004. https://doi.org/10.1001/jamaneurol.2015.1241
Hedström, A., Bäärnhielm, M., Olsson, T., & Alfredsson, L. (2011). Exposure to environmental tobacco smoke is associated with increased risk for multiple sclerosis. Multiple Sclerosis Journal, 17(7), 788-793. https://doi.org/10.1177/1352458511399610
Husseini, L., Geladaris, A., & Weber, M. S. (2024). Toward identifying key mechanisms of progression in multiple sclerosis. Trends in Neurosciences, 47(1), 58-70. https://doi.org/10.1016/j.tins.2023.11.005
Isensee, F., Jaeger, P. F., Kohl, S. A. A., Petersen, J., & Maier-Hein, K. H. (2021). nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation. Nature Methods, 18(2), 203-211. https://doi.org/10.1038/s41592-020-01008-z
Kobelt, G., Thompson, A., Berg, J., Gannedahl, M., Eriksson, J., the MSCOI Study Group, & the European Multiple Sclerosis Platform. (2017). New insights into the burden and costs of multiple sclerosis in Europe. Multiple Sclerosis Journal, 23(8), 1123-1136. https://doi.org/10.1177/1352458517694432
La Rosa, F., Abdulkadir, A., Fartaria, M. J., Rahmanza- deh, R., Lu, P.-J., Galbusera, R., Barakovic, M., Thiran, J.-P., Granziera, C., & Cuadra, M. B. (2020). Multiple sclerosis cortical and WM lesion segmentation at 3T MRI: A deep learning method based on FLAIR and MP2RAGE. NeuroImage: Clinical, 27, 102335. https://doi.org/10.1016/j.nicl.2020.102335
Lorscheider, J., Buzzard, K., Jokubaitis, V., Spelman, T., Havrdova, E., Horakova, D., Trojano, M., Izquierdo, G., Girard, M., Duquette, P., Prat, A., Lugaresi, A., Grand’ Maison, F., Grammond, P., Hupperts, R., Alroughani, R., Sola, P., Boz, C., Pucci, E., … on behalf of the MSBase Study Group. (2016). Defining secondary progressive multiple sclerosis. Brain, 139(9), 2395-2405. https://doi.org/10.1093/brain/aww173
Lublin, F. D., Reingold, S. C., Cohen, J. A., Cutter, G. R., Sorensen, P. S., Thompson, A. J., Wolinsky, J. S., Balcer, L. J., Banwell, B., Barkhof, F., Bebo, B., Calabresi, P. A., Clanet, M., Comi, G., Fox, R. J., Freedman, M. S., Goodman, A. D., Inglese, M., Kappos, L., … Polman, C. H. (2014). Defining the clinical course of multiple sclerosis: The 2013 revisions. Neurology, 83(3), 278-286. https://doi.org/10.1212/WNL.0000000000000560
Margoni, M., Preziosa, P., Rocca, M. A., & Filippi, M. (2023). Depressive symptoms, anxiety and cognitive impairment: Emerging evidence in multiple sclerosis. Translational Psychiatry, 13(1), 264. https://doi.org/10.1038/s41398-023-02555-7
Nabizadeh, F., Ramezannezhad, E., Kargar, A., Sharafi, A. M. , & Ghaderi, A. (2023). Diagnostic performance of artificial intelligence in multiple sclerosis: A systematic review and meta-analysis. Neurological Sciences, 44(2), 499-517. https://doi.org/10.1007/s10072-022-06460-7
Oturai, D. B., Bach Søndergaard, H., Koch-Henriksen, N., Andersen, C., Laursen, J. H., Gustavsen, S., Kristensen, J. T., Magyari, M., Sørensen, P. S., Sellebjerg, F., Thørner, L. W., Ullum, H., & Oturai, A. B. (2021). Exposure to passive smoking during adolescence is associated with an increased risk of developing multiple sclerosis. Multiple Sclerosis Journal, 27(2), 188-197. https://doi.org/10.1177/1352458520912500
Pongratz, V., Schmidt, P., Bussas, M., Grahl, S., Gaser, C., Berthele, A., Hoshi, M.-M., Kirschke, J., Zimmer, C., Hemmer, B., & Mühlau, M. (2019). Prognostic value of white matter lesion shrinking in early multiple sclerosis : An intuitive or naïve notion? Brain and Behavior, 9(12), e01417. https://doi.org/10.1002/brb3.1417
Rotstein, D., & Montalban, X. (2019). Reaching an evidence-based prognosis for personalized treatment of multiple sclerosis. Nature Reviews Neurology, 15(5), 287-300. https://doi.org/10.1038/s41582-019-0170-8
Schoonheim, M. M., Popescu, V., Rueda Lopes, F. C., Wiebenga, O. T., Vrenken, H., Douw, L., Polman, C. H., Geurts, J. J. G., & Barkhof, F. (2012). Subcortical atrophy and cognition : Sex effects in multiple sclerosis. Neurology, 79(17), 1754-1761. https://doi.org/10.1212/WNL.0b013e3182703f46
Tanasescu, R., Constantinescu, C. S., Tench, C. R., & Manouchehrinia, A. (2018). Smoking Cessation and the Reduction of Disability Progression in Multiple Sclerosis : A Cohort Study. Nicotine & Tobacco Research, 20(5), 589-595. https://doi.org/10.1093/ntr/ntx084
Walker, L. A. S., Osman, L., Berard, J. A., Rees, L. M., Freedman, M. S., MacLean, H., & Cousineau, D. (2016). Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS) : Canadian contribution to the international validation project. Journal of the Neurological Sciences, 362, 147-152. https://doi.org/10.1016/j.jns.2016.01.040
Wattjes, M. P., Ciccarelli, O., Reich, D. S., Banwell, B., De Stefano, N., Enzinger, C., Fazekas, F., Filippi, M., Frederiksen, J., Gasperini, C., Hacohen, Y., Kappos, L., Li, D. K. B., Mankad, K., Montalban, X., Newsome, S. D., Oh, J., Palace, J., Rocca, M. A., … Oh, J. (2021). 2021 MAGNIMS–CMSC–NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. The Lancet Neurology, 20(8), 653-670. https://doi.org/10.1016/s1474-4422(21)00095-8
Wiltgen, T., McGinnis, J., Schlaeger, S., Kofler, F., Voon, C., Berthele, A., Bischl, D., Grundl, L., Will, N., Metz, M., Schinz, D., Sepp, D., Prucker, P., Schmitz-Koep, B., Zimmer, C., Menze, B., Rueckert, D., Hemmer, B., Kirschke, J., … Wiestler, B. (2024). LST-AI: A deep learning ensemble for accurate MS lesion segmentation. NeuroImage: Clinical, 42, 103611. https://doi.org/10.1016/j.nicl.2024.103611
Wybrecht, D., Reuter, F., Pariollaud, F., Zaaraoui, W., Le Troter, A., Rico, A., Confort-Gouny, S., Soulier, E., Guye, M., Maarouf, A., Ranjeva, J.-P., Pelletier, J., & Audoin, B. (2017). New brain lesions with no impact on physical disability can impact cognition in early multiple sclerosis: A ten-year longitudinal study. PLOS ONE, 12(11), e0184650. https://doi.org/10.1371/journal.pone.0184650
Zheng, Y.-B., Shi, L., Zhu, X.-M., Bao, Y.-P., Bai, L.-J., Li, J.-Q., Liu, J.-J., Han, Y., Shi, J., & Lu, L. (2021). Anticholinergic drugs and the risk of dementia: A systematic review and meta-analysis. Neuroscience & BiobehavioralReviews, 127, 296-306. https://doi.org/10.1016/j.neubiorev.2021.04.031