large language models; medical education; didactic lecture; artificial intelligence; educational technology
Abstract :
[en] The increasing use of generative large language models (LLMs) necessitates a fundamental reevaluation of traditional didactic lectures in medical education, particularly within psychiatry. The specialty's inherent diagnostic ambiguity, biopsychosocial complexity, and reliance on nuanced interpersonal skills demand an educational model that transcends mere information transfer, focusing instead on cultivating sophisticated clinical reasoning. This viewpoint argues for a shift from passive knowledge transmission to active, facilitated development of higher-order thinking, aligning with the Bloom taxonomy. We describe four core propositions: (1) shifting foundational knowledge acquisition to faculty-curated asynchronous artificial intelligence (AI)-assisted micromodules; (2) transforming synchronous time into "Ambiguity Seminars" for discussing nuanced cases, biopsychosocial formulation, and ethical dilemmas, leveraging faculty expertise in guiding reasoning; (3) integrating live LLM critical interaction drills to develop prompt engineering skills and critical appraisal of AI outputs; and (4) realigning assessment methods (eg, objective structured clinical examinations [OSCEs], reflective writing) to evaluate clinical reasoning and integrative skills rather than rote recall. Successful implementation requires comprehensive faculty development, explicit institutional investment, and a phased approach that addresses scalability across varying resource settings. This reimagined approach aims to cultivate clinical wisdom, equipping psychiatric trainees with adaptive reasoning frameworks essential for excellence in an AI-mediated future.
Disciplines :
Psychiatry
Author, co-author :
Elkrief, Laurent; Département de Psychiatrie et d'Addictologie, Faculté de Médecine, Université de Montréal, Montréal, Canada ; Centre Hospitalier, Université de Montréal, Montreal, Canada
Hudon, Alexandre; Département de Psychiatrie et d'Addictologie, Faculté de Médecine, Université de Montréal, Montréal, Canada ; Department of Psychiatry, Institut universitaire en santé mentale de Montréal, Montréal, Canada ; Department of Psychiatry, Institut Philippe Pinel de Montréal, Montreal, Canada ; Groupe Interdisciplinaire de Recherche sur la Cognition et le Raisonnement Professionnel, Université de Montréal, Montréal, Canada
Briganti, Giovanni ; Université de Liège - ULiège > Département des sciences cliniques > Santé digitale ; Service de Médecine computationnelle et neuropsychiatrie, Faculté de Médecine, et Sciences Biomédicales, University of Mons, Pharmacie, Mons, Belgium
Lespérance, Paul; Département de Psychiatrie et d'Addictologie, Faculté de Médecine, Université de Montréal, Montréal, Canada ; Centre Hospitalier, Université de Montréal, Montreal, Canada
Fo, Xsl
Language :
English
Title :
Beyond Lectures: Reimagining Psychiatric Didactics for the Age of AI
Sandrone S, Berthaud JV, Carlson C, Cios J, Dixit N, Farheen A, et al. Active learning in psychiatry education: current practices and future perspectives. Front Psychiatry. 2020;11:211. [FREE Full text] [doi: 10.3389/fpsyt.2020.00211] [Medline: 32390876]
Frank JR, Snell LS, Cate OT, Holmboe ES, Carraccio C, Swing SR, et al. Competency-based medical education: theory to practice. Med Teach. 2010;32(8):638-645. [doi: 10.3109/0142159X.2010.501190] [Medline: 20662574]
Hatano G, Inagaki K. Two courses of expertise. Hokkaido University Collection of Scholarly and Academic Papers. Mar 1984. URL: https://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/25206/1/6_P27-36.pdf [accessed 2025-10-27]
Jordan J, Wagner J, Manthey DE, Wolff M, Santen S, Cico SJ. Optimizing lectures from a cognitive load perspective. AEM Educ Train. Jul 2020;4(3):306-312. [FREE Full text] [doi: 10.1002/aet2.10389] [Medline: 32704604]
Gardner G, Feldman M, Santen SA, Mui P, Biskobing D. Determinants and outcomes of in-person lecture attendance in medical school. Med Sci Educ. Aug 2022;32(4):883-890. [FREE Full text] [doi: 10.1007/s40670-022-01581-2] [Medline: 35821745]
Freeman S, Eddy SL, McDonough M, Smith MK, Okoroafor N, Jordt H, et al. Active learning increases student performance in science, engineering, and mathematics. Proc Natl Acad Sci U S A. Jun 10, 2014;111(23):8410-8415. [FREE Full text] [doi: 10.1073/pnas.1319030111] [Medline: 24821756]
Chen F, Lui AM, Martinelli SM. A systematic review of the effectiveness of flipped classrooms in medical education. Med Educ. Jun 2017;51(6):585-597. [doi: 10.1111/medu.13272] [Medline: 28488303]
Aster A, Laupichler MC, Rockwell-Kollmann T, Masala G, Bala E, Raupach T. ChatGPT and other large language models in medical education - scoping literature review. Med Sci Educ. Feb 2025;35(1):555-567. [doi: 10.1007/s40670-024-02206-6] [Medline: 40144083]
Hallquist E, Gupta I, Montalbano M, Loukas M. Applications of artificial intelligence in medical education: a systematic review. Cureus. Mar 2025;17(3):e79878. [doi: 10.7759/cureus.79878] [Medline: 40034416]
Arif TB, Munaf U, Ul-Haque I. The future of medical education and research: is ChatGPT a blessing or blight in disguise? Med Educ Online. Dec 2023;28(1):2181052. [FREE Full text] [doi: 10.1080/10872981.2023.2181052] [Medline: 36809073]
Aljamaan F, Temsah M, Altamimi I, Al-Eyadhy A, Jamal A, Alhasan K, et al. Reference hallucination score for medical artificial intelligence chatbots: development and usability study. JMIR Med Inform. Jul 31, 2024;12:e54345. [FREE Full text] [doi: 10.2196/54345] [Medline: 39083799]
Arun G, Perumal V, Urias FPJB, Ler YE, Tan BWT, Vallabhajosyula R, et al. ChatGPT versus a customized AI chatbot (Anatbuddy) for anatomy education: a comparative pilot study. Anat Sci Educ. Oct 2024;17(7):1396-1405. [doi: 10.1002/ase.2502] [Medline: 39169464]
Nguyen T. ChatGPT in medical education: a precursor for automation bias? JMIR Med Educ. Jan 17, 2024;10:e50174. [FREE Full text] [doi: 10.2196/50174] [Medline: 38231545]
Kıyak YS. Beginner-level tips for medical educators: guidance on selection, prompt engineering, and the use of artificial intelligence chatbots. Med Sci Educ. Dec 2024;34(6):1571-1576. [doi: 10.1007/s40670-024-02146-1] [Medline: 39758489]
Prégent J, Chung V, El Adib I, Désilets M, Hudon A. Applications of artificial intelligence in psychiatry and psychology education: scoping review. JMIR Med Educ. Jul 28, 2025;11:e75238. [FREE Full text] [doi: 10.2196/75238] [Medline: 40720804]
Lee QY, Chen M, Ong CW, Ho CSH. The role of generative artificial intelligence in psychiatric education- a scoping review. BMC Med Educ. Mar 25, 2025;25(1):438. [FREE Full text] [doi: 10.1186/s12909-025-07026-9] [Medline: 40133891]
Omiye JA, Lester JC, Spichak S, Rotemberg V, Daneshjou R. Large language models propagate race-based medicine. NPJ Digit Med. Oct 20, 2023;6(1):195. [doi: 10.1038/s41746-023-00939-z] [Medline: 37864012]
Smith A, Hachen S, Schleifer R, Bhugra D, Buadze A, Liebrenz M. Old dog, new tricks? Exploring the potential functionalities of ChatGPT in supporting educational methods in social psychiatry. Int J Soc Psychiatry. Dec 2023;69(8):1882-1889. [doi: 10.1177/00207640231178451] [Medline: 37392000]
Birks S, Gray J, Darling-Pomranz C. Using artificial intelligence to provide a 'flipped assessment' approach to medical education learning opportunities. Med Teach. Aug 2025;47(8):1377-1384. [FREE Full text] [doi: 10.1080/0142159X.2024.2434101] [Medline: 39616548]
Thomae AV, Witt CM, Barth J. Integration of ChatGPT into a course for medical students: explorative study on teaching scenarios, students' perception, and applications. JMIR Med Educ. Aug 22, 2024;10:e50545. [FREE Full text] [doi: 10.2196/50545] [Medline: 39177012]
Hurtubise L, Hall E, Sheridan L, Han H. The flipped classroom in medical education: engaging students to build competency. J Med Educ Curric Dev. 2015;2:10.4137/JMECD.S23895. [FREE Full text] [doi: 10.4137/JMECD.S23895] [Medline: 35187252]
Lopez S. Impact of cognitive load theory on the effectiveness of microlearning modules. Euro J Education Pedagogy. Mar 15, 2024;5(2):29-35. [doi: 10.24018/ejedu.2024.5.2.799]