Abnormal Child Behavior in primary school students: A Bayesian network analysis Le comportement anormal de l'enfant en école primaire : une analyse par réseau bayésien - 2025
Abnormal Child Behavior in primary school students: A Bayesian network analysis Le comportement anormal de l'enfant en école primaire : une analyse par réseau bayésien
Network analysis ADHD CTRS-R; S Psychometric scale Bayesian network Analyse par réseau TDAH CTRS-R; S Échelle psychométrique Réseau bayésien
Abstract :
[en] The Conners Teacher Rating Scale revised: short (CTRS-R: S) is a widely used psychometric instrument to screen for Attention Deficit and Hyperactivity Disorder (ADHD) as well as a broader construct of abnormal child behavior. In this study, we aimed to examine the network structure of abnormal child behavior using the CTRS-R: S in a sample of 525 French-speaking primary school students from Belgium. We employed Bayesian network analysis to estimate both the 28-item network and the network with the 8 items with the highest strength centrality, using the PC algorithm and bootstrapping to estimate the figures. Our study uncovered associations between inattention symptoms and learning disorders, shedding new light on the complexity of abnormal child behavior. We also identified different network structures, revealing a fresh perspective on the underlying mechanisms of these conditions. Our findings, though preliminary, are consistent with previous research and add to the burgeoning literature on Bayesian network analysis in abnormal child behavior research. Overall, our study underscores the complexity of the construct of abnormal child behavior and the importance of considering multiple factors in screening and diagnosis, emphasizing the need for a comprehensive approach to understanding and treating these disorders.
Disciplines :
Psychiatry
Author, co-author :
Till, Apolline; Chair of Artificial Intelligence and Digital Medicine, Department of Neuroscience, Faculty of Medicine, University of Mons, Mons, Belgium
Henry, Teague; Department of Psychology and School of Data Science, University of Virginia, Charlottesville, United States of America
Scutari, Marco; Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA), Lugano, Switzerland
Briganti, Giovanni ; Université de Liège - ULiège > Département des sciences cliniques > Santé digitale ; Chair of Artificial Intelligence and Digital Medicine, Department of Neuroscience, Faculty of Medicine, University of Mons, Mons, Belgium ; Laboratoire de Psychologie Médicale, Faculté de Médecine, route de Lennik 808, Université libre de Bruxelles, Brussels, Belgium
Language :
English
Title :
Abnormal Child Behavior in primary school students: A Bayesian network analysis Le comportement anormal de l'enfant en école primaire : une analyse par réseau bayésien
Conners, C.K., Sitarenios, G., Parker, J.D., Epstein, J.N., Revision and restandardization of the Conners Teacher Rating Scale (CTRS-R): factor structure, reliability, and criterion validity. J Abnorm Child Psychol 26:4 (1998), 279–291.
American Psychiatric Association. Diagnostic and statistical manual of mental disorders. Fifth Edition. American Psychiatric Association. 2013, 10.1176/appi.books.9780890425596 [Internet. Cited 2019 Dec 18].
Cortese, S., Pharmacologic treatment of Attention deficit hyperactivity disorder. N Engl J Med 383:11 (2020), 1050–1056.
Gorman, E.B., Klorman, R., Thatcher, J.E., Borgstedt, A.D., Effects of methylphenidate on subtypes of Attention deficit hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 45:7 (2006), 808–816.
O'Driscoll, G.A., Dépatie, L., Holahan, A.L.V., Savion-Lemieux, T., Barr, R.G., Jolicoeur, C., et al. Executive functions and methylphenidate response in subtypes of Attention deficit hyperactivity disorder. Biol Psychiatry 57:11 (2005), 1452–1460.
Ogundele, M.O., Behavioural and emotional disorders in childhood: a brief overview for paediatricians. World J Clin Pediatr 7:1 (2018), 9–26.
Till, A.C., Florquin, R., Delhaye, M., Kornreich, C., Williams, D.R., Briganti, G., A network perspective on abnormal child behavior in primary school students. Psychol Rep 126:4 (2022), 1933–1953 [00332941221077907].
Borsboom, D., A network theory of mental disorders. World Psychiatry 16:1 (2017), 5–13.
Epskamp, S., Fried, E.I., A tutorial on regularized partial correlation networks. Psychol Methods 23:4 (2018), 617–634.
Briganti, G., Scutari, M., McNally, R.J., A tutorial on Bayesian networks for psychopathology researchers. Psychol Methods, 28(4), 2022, 947.
Koller, D., Friedman, N., Probabilistic graphical models: principles and techniques. 2009, MIT Press, Cambridge, MA, 1231 [Adaptive computation and machine learning].
Pearl, J., 1988, Morgan Kaufmann Publishers Inc, San Francisco, CA, USA.
Scutari, M., Denis, J.B., Bayesian networks: with examples in R. 2015 [Internet. Cited 2019 Jan 24. Available from: https://www.crcpress.com/Bayesian-Networks-With-Examples-in-R/Scutari-Denis/p/book/9781482225587].
Blanken, T.F., Van Der Zweerde, T., Van Straten, A., Van Someren, E.J.W., Borsboom, D., Lancee, J., Introducing network intervention analysis to investigate sequential, symptom-specific treatment effects: a demonstration in co-occurring insomnia and depression. Psychother Psychosom 88:1 (2019), 52–54.
Kossakowski, J.J., Epskamp, S., Kieffer, J.M., Borkulo, C.D., van, Rhemtulla, M., Borsboom, D., The application of a network approach to Health-Related Quality of Life (HRQoL): introducing a new method for assessing HRQoL in healthy adults and cancer patients. Qual Life Res 25:4 (2016), 781–792.
Bailly, D., Bouvard, M., Casadebaig, F., Corcos, M., Fombonne, E., Gorwood, P., et al. Troubles mentaux : dépistage et prévention chez l'enfant et l'adolescent. Institut national de la santé et de la recherche médicale (Inserm). 2003, 887 [Internet. Report. Cited 2025 Jul 20. Available from: https://hal-lara.archives-ouvertes.fr/hal-01570673].
Scutari, M., Silander, T., Ness, R., bnlearn: Bayesian Network Structure Learning, parameter learning and inference. 2023 [Internet. Cited 2023 Jun 22. Available from: https://cran.r-project.org/web/packages/bnlearn/index.html].
Le, T.D., Hoang, T., Li, J., Liu, L., Liu, H., A fast PC algorithm for high dimensional causal discovery with multi-core PCs. IEEE/ACM Trans Comput Biol Bioinform 16:5 (2019), 1483–1495.
Spirtes, P., Glymour, C., Scheines, R., Regression, causation and prediction. Spirtes, P., Glymour, C., Scheines, R., (eds.) Causation, Prediction, and Search, 1993, Springer, New York, NY, 238–258, 10.1007/978-1-4612-2748-9_8 [Internet. Lecture Notes in Statistics. Cited 2022 Aug 4].
Briganti, G., Scutari, M., Linkowski, P., A machine learning approach to relationships among alexithymia components. Psychiatr Danub 32:Suppl 1 (2020), 180–187.
Briganti, G., Scutari, M., Linkowski, P., Network structures of symptoms from the Zung Depression Scale. Psychol Rep 124:4 (2020), 1897–1911 [003329412094211].
Moll, K., Kunze, S., Neuhoff, N., Bruder, J., Schulte-Körne, G., Specific Learning Disorder: prevalence and gender differences. Kroesbergen E, editor. PLoS One, 9(7), 2014, e103537.
Morsanyi, K., van Bers, B.M.C.W., McCormack, T., McGourty, J., The prevalence of specific learning disorder in mathematics and comorbidity with other developmental disorders in primary school-age children. Br J Psychol 109:4 (2018), 917–940.
Mayes, S.D., Calhoun, S.L., Frequency of reading, math, and writing disabilities in children with clinical disorders. Learn Individ Differ 16:2 (2006), 145–157.
McGee, R., Share, D.L., Attention deficit disorder hyperactivity and academic failure: which comes first and what should be treated?. J Am Acad Child Adolesc Psychiatry 27:3 (1988), 318–325.
Maehler, C., Schuchardt, K., Working memory in children with specific learning disorders and/or attention deficits. Learn Individ Differ 49 (2016), 341–347.
Re, A.M., Mirandola, C., Esposito, S.S., Capodieci, A., Spelling errors among children with ADHD symptoms: the role of working memory. Res Dev Disabil 35:9 (2014), 2199–2204.
McNally, R.J., Points of contact between network psychometrics and experimental psychopathology. J Exp Psychopathol, 14(1), 2023 [p.20438087231151505].
Harrison, J.R., Bunford, N., Evans, S.W., Owens, J.S., Educational accommodations for students with behavioral challenges: a systematic review of the literature. Rev Educ Res 83:4 (2013), 551–597.
Sukhodolsky, D.G., Martin, A., Parent management training: treatment for oppositional, aggressive, and antisocial behavior in children and adolescents. J Am Acad Child Adolesc Psychiatry 45:2 (2006), 256–257.
Snowling, M.J., Hulme, C., Interventions for children's language and literacy difficulties. Int J Lang Commun Disord 47:1 (2012), 27–34.
Martel, M.M., Levinson, C.A., Langer, J.K., Nigg, J.T., A network analysis of developmental change in ADHD symptom structure from preschool to adulthood. Clin Psychol Sci 4:6 (2016), 988–1001.
Silk, T.J., Malpas, C.B., Beare, R., Efron, D., Anderson, V., Hazell, P., et al. A network analysis approach to ADHD symptoms: more than the sum of its parts. PLoS One, 14(1), 2019, e0211053.