[en] High-resolution spectra of the CN B[SUP]2[/SUP] Sigma[SUP]+[/SUP]-X[SUP]2[/SUP] Sigma[SUP]+[/SUP] (0,0) band at 390 nanometers yield isotopic ratios for comets C/1995 O1 (Hale-Bopp) and C/2000 WM1 (LINEAR) as follows: 165 +/- 40 and 115 +/- 20 for [SUP]12[/SUP]C/[SUP]13[/SUP]C, 140 +/- 35 and 140 +/- 30 for [SUP]14[/SUP]N/[SUP]15[/SUP]N. Our N isotopic measurements are lower than the terrestrial [SUP]14[/SUP]N/[SUP]15[/SUP]N = 272 and the ratio for Hale-Bopp from measurements of HCN, the presumed parent species of CN. This isotopic anomaly suggests the existence of other parent(s) of CN, with an even lower N isotopic ratio. Organic compounds like those found in interplanetary dust particles are good candidates.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Arpigny, Claude ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Jehin, Emmanuel ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Astrophysique et traitement de l'image
Manfroid, Jean ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Hutsemekers, Damien ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Astroph. extragalactique et observations spatiales (AEOS)
Schulz, Rita; ESA/RSSD, ESTEC, Post Office Box 299, NL-2200 AG Noordwijk, Netherlands.
Stüwe, J. A.; Leiden Observatory, NL-2300 RA Leiden, Netherlands.
Zucconi, Jean-Marc; Observatoire de Besançon, F25010 Besançon Cedex, France.
Ilyin, Ilya; Astronomy Division, Post Office Box 3000, FIN 90014 University of Oulu, Finland.
Language :
English
Title :
Anomalous Nitrogen Isotope Ratio in Comets
Publication date :
01 September 2003
Journal title :
Science
ISSN :
0036-8075
eISSN :
1095-9203
Publisher :
American Association for the Advancement of Science, Washington, United States - District of Columbia
Material and methods are available as supporting material on Science online.
H. Dekker et al., Proc. SPIE 4008, 534 (2000).
J. M. Zucconi, M. C. Festou, Astron. Astrophys. 150, 180 (1985).
C. Arpigny et al., Bull. Am. Astron. Soc 32 1074 (2000).
A wide range of values in the 12C/13C ratio (up to 5000) was measured in a number of small C-rich grains in P/Halley, the only comet for which compositional data about the "dust" are available. [E. K. Jessberger, Space Sci. Rev. 90, 91 (1999), and references therein.] Jessberger suggests that a link exists between the cometary dust, IDPS, and circumstellar grains.
M. L. Kleine, S. Wyckoff, P. A. Wehinger, B. A. Peterson, Astrophys. J. 439, 1021 (1995).
S. Wyckoff et al., Astrophys. J. 535, 991 (2000).
E. Anders, N. Grevesse, Geochim. Cosmochim. Acta 53, 197 (1989).
T. Owen et al., Astrophys. J. 553, L77 (2001).
Only a lower limit (∼200) was derived optically for comet C/1990 K1 (Levy) but this estimate (7) is probably too high. The comparison of synthetic spectra with published plots of the CN Violet band in this and several other comets in which 13C14N was measured [1P/Halley (6), C/ 1989 Q1 (Okasaki-Levy-Rudenko), C/1989 X1 (Austin) (7), and 122P/1995 S1 (de Vico) (39)] shows the presence of 12C15N features, not substantially fainter than 13C14N. A new analysis of some of these comets is under way.
D. C. Jewitt, H. E. Matthews, T. Owen, R. Meier, Science 278, 90 (1997).
L. M. Ziurys et al., Astrophys. J. 527, L67 (1999).
This is not the first time that a cometary isotope ratio is found to be different in different species, for instance, the D/H ratio obtained from H 2O and HCN in Hale-Bopp [R. Meier, T. C. Owen, Space Sci. Rev. 90, 33 (1999)].
H. Rauer et al., Astron. Astrophys. 397, 1109 (2003).
J. J. Klavetter, M. F. A'Hearn, Icarus 146, 583 (2000).
An excellent recent review of these questions is to be found in L. M. Woodney et al., Icarus 157, 193 (2002).
These "CHON" grains, rich in the light elements (H, C, N, and O), were discovered in the coma of Halley's comet; they are tiny (submicrometer- to micrometer-sized) particulates containing complex organic compounds of low degrees of volatility (5). M. F. A'Hearn et al. [Nature 324, 649 (1986)] first suggested that CN radicals may be released from CHON grains.
For example, a ratio of 80 is needed in order to yield an average of 140, if we suppose that CN is produced in equal proportions from HCN and a second source. In the case of WM1, different spectra were analyzed independently, thanks to their high S/N ratio, and they do not show any appreciable spatial variation of the isotope ratios over distances of 1 to 5 × 103 km from the comet nucleus.
G. Dahmen, T. L. Wilson, F. Matteucci, Astron. Astrophys. 295, 194 (1995).
Y.-N. Chin, C. Henkel, N. Langer, R. Mauersberger, Astrophys. J. 512, L143 (1999).
C. Henkel et al., in Chemical Evolution from Zero to High Redshift, J. R. Walsh, M. R. Rosa, Eds. (Springer-Verlag, Berlin, 1999), pp. 104-108.
D. D. Clayton, D. Arnett, J. Kane, B. Mayer, Astrophys. J. 486, 824 (1997).
15N is coming from an early production in short-lived massive stars (becoming Type II supernovae). 14N is a secondary element produced by long-lived low- and intermediate-mass stars (19, 20, 21).
E. Zinner, Annu. Rev. Earth Planet Sci. 26, 147 (1998).
P. Hoppe et al., Astrophys. J. 487, L101 (1997).
S. Mostefaoui et al., Earth Planet Sci. Lett. 204, 89 (2002).
E. K. Jessberger et al., in Interplanetary Dust, E. Grün et al., Eds. (Springer-Verlag, Berlin, 2001), pp. 253-294.
S. Messenger, Nature 404, 968 (2000).
C. Floss, F. J. Stadermann, Lunar Planet. Sci. XXXIV, 1234 (2003).
J. Aléon et al., Geochim. Cosmochim. Acta, in press.
L. P. Keller, S. Messenger, M. Miller, K. L. Thomas, Lunar Planet. Sci. XXVIII, 1811 (1998).
M. P. Bernstein et al., Astrophys. J. 454, 327 (1995).
M. P. Bernstein et al., Astrophys. J. 576, 1115 (2002).
T. W. Rettig et al., Astrophys. J. 393, 298 (1992).
We thank S. B. Charnley for the suggestion concerning "HCN polymers."
S. B. Charnley, S. D. Rodgers, Astrophys. J. 569, L133 (2002).
R. Terzieva, E. Herbst, Mon. Not. R. Astron. Soc. 317, 563 (2000).
A. L. Cochran et al., Icarus 146, 583 (2000).
A. L. Cochran, W. D. Cochran, Icarus 157, 297 (2002).
δ15N = 103 [(15N/ 14N)/(15N/14N)⊕ - 1]
R. Kallenbach et al., Astrophys. J. 507, L185 (1998).
K. Hashizume et al., Science 290, 1142 (2000).
R. Lucas, H. Liszt, Astron. Astrophys. 337, 246 (1998).
M. Ikeda et al., Astrophys. J. 575, 250 (2002).
Based on observations of comet Hale-Bopp made with the Nordic Optical Telescope, La Palma, Canary Islands, Spain. The WM1 observations were carried out at the ESO. We thank the director of the ESO VLT for approving our program for Director's Discretionary Time (ESO DDT 268.C-5570). We also thank the observatory staff astronomers who have carried out these observations. The authors are grateful to J. Aléon for useful discussions. C.A., J.M., and D.H. acknowledge financial support from the Belgian NFSR.