Einstein Telescope; Gravitational waves; Seismic instruments; Seismic noise; Time-series analysis; Ambients; Einstein telescope; Gravitational waves detectors; Gravitational-waves; Sardinia; Seismic field; Temporal variation; Geophysics; Geochemistry and Petrology
Abstract :
[en] Einstein Telescope (ET) is a proposed underground infrastructure in Europe to host future generations of gravitational-wave (GW) detectors. One of its design goals is to extend the observation band of terrestrial GW detectors from currently about 20 Hz down to 3 Hz. The coupling of a detector to its environment becomes stronger at lower frequencies, which makes it important to carefully analyse environmental disturbances at ET candidate sites. Seismic disturbances pose the greatest challenge since there are several important mechanisms for seismic vibrations to produce noise in ET, for example, through gravitational coupling, stray light, or through harmful constraints on the design of ET’s control system. In this paper, we present an analysis of the time-variant properties of the seismic field at the Sardinia candidate site of ET connected to anthropogenic as well as natural phenomena. We find that temporal variations of source distributions and of the noise spectra generally follow predictable trends in the form of diurnal, weekly, or seasonal cycles. Specific seismic sources were identified such as road bridges, which produce observable disturbances underground. This information can be used to adapt a detector’s seismic isolation and control system.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Di Giovanni, M.; Gran Sasso Science Institute (GSSI), L’Aquila, Italy ; INFN, Laboratori Nazionali del Gran Sasso, Assergi, Italy
Koley, Soumen ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Ondes gravitationnelles ; Gran Sasso Science Institute (GSSI), L’Aquila, Italy ; INFN, Laboratori Nazionali del Gran Sasso, Assergi, Italy
Ensing, J.X.; AstroCeNT, Nicolaus Copernicus Astronomical Center of the Polish Acedemy of Sciences, Warsaw, Poland
Andric, T.; Gran Sasso Science Institute (GSSI), L’Aquila, Italy ; INFN, Laboratori Nazionali del Gran Sasso, Assergi, Italy
Harms, J.; Gran Sasso Science Institute (GSSI), L’Aquila, Italy ; INFN, Laboratori Nazionali del Gran Sasso, Assergi, Italy
D’Urso, D.; Department of Chemistry and Pharmacy, Universit‘a degli Studi di Sassari, Sassari, Italy ; INFN, Laboratori Nazionali del Sud, Catania, Italy
Naticchioni, L.; Department of Physics, Sapienza Università di Roma, Roma, Italy ; INFN, Sezione di Roma 1, Roma, Italy
De Rosa, R.; Department of Physics, Universit‘a degli Studi di Napoli Federico II, Napoli, Italy ; INFN, Sezione di Napoli, Napoli, Italy
Giunchi, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Pisa, Italy
Allocca, A. ; Department of Physics, Universit‘a degli Studi di Napoli Federico II, Napoli, Italy ; INFN, Sezione di Napoli, Napoli, Italy
Cadoni, M.; Department of Physics, Università degli Studi di Cagliari, Cagliari, Italy ; INFN, Sezione di Cagliari, Monserrato, Italy
Calloni, E.; Department of Physics, Universit‘a degli Studi di Napoli Federico II, Napoli, Italy ; INFN, Sezione di Napoli, Napoli, Italy
Cardini, A.; INFN, Sezione di Cagliari, Monserrato, Italy
Carpinelli, M.; Department of Chemistry and Pharmacy, Universit‘a degli Studi di Sassari, Sassari, Italy ; INFN, Laboratori Nazionali del Sud, Catania, Italy ; INFN, Sezione di Cagliari, Monserrato, Italy
Contu, A. ; INFN, Sezione di Cagliari, Monserrato, Italy ; INAF—Osservatorio Astronomico di Cagliari, Cagliari, Italy
Errico, L.; Department of Physics, Universit‘a degli Studi di Napoli Federico II, Napoli, Italy ; INFN, Sezione di Napoli, Napoli, Italy
Mangano, V.; Department of Physics, Sapienza Università di Roma, Roma, Italy ; INFN, Sezione di Roma 1, Roma, Italy
Olivieri, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Bologna, Italy
Punturo, M.; INFN, Sezione di Perugia, Roma, Italy
Rapagnani, P.; Department of Physics, Sapienza Università di Roma, Roma, Italy ; INFN, Sezione di Roma 1, Roma, Italy
Ricci, F.; Department of Physics, Sapienza Università di Roma, Roma, Italy ; INFN, Sezione di Roma 1, Roma, Italy
Rozza, D.; Department of Chemistry and Pharmacy, Universit‘a degli Studi di Sassari, Sassari, Italy ; INFN, Laboratori Nazionali del Sud, Catania, Italy
Saccorotti, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Pisa, Italy
Trozzo, L.; INFN, Sezione di Napoli, Napoli, Italy
Dell’aquila, D.; Department of Chemistry and Pharmacy, Universit‘a degli Studi di Sassari, Sassari, Italy ; INFN, Laboratori Nazionali del Sud, Catania, Italy
Pesenti, L.; Department of Chemistry and Pharmacy, Universit‘a degli Studi di Sassari, Sassari, Italy ; INFN, Laboratori Nazionali del Sud, Catania, Italy
Sipala, V.; Department of Chemistry and Pharmacy, Universit‘a degli Studi di Sassari, Sassari, Italy ; INFN, Laboratori Nazionali del Sud, Catania, Italy
Tosta e Melo, I.; Department of Chemistry and Pharmacy, Universit‘a degli Studi di Sassari, Sassari, Italy ; INFN, Laboratori Nazionali del Sud, Catania, Italy
MDG gratefully acknowledges the support of the Italian Ministry of Education, University and Research within the PRIN 2017 Research Program Framework, no. 2017SYRTCN and INGV-Pisa for making their computational resources available. SK acknowledges the support through a collaboration agreement between Gran Sasso Science Institute and Nikhef and from the European Gravitational Observatory through a collaboration convention on Advanced Virgo +. JE would like to acknowledge the financial support of the International Research Agenda Programme AstroCeNT (MAB/2018/7) funded by the Foundation for Polish Science from the European Regional Development Fund and by the EU’s Horizon 2020 research and innovation program under grant agreement no. 952480 (DarkWave). MDG, SK and JE also acknowledge the use of the ETRepo computing cluster hosted by the Department of Physics of the University of Pisa (Italy). This study was conducted within the framework agreement between Istituto Nazionale di Fisica Nucleare (INFN) and Istituto Nazionale di Geofisica e Vulcanologia (INGV). The authors would also like to express their gratitude to INFN that funded this project thanks to the Protocollo di Intesa tra Ministero dell’Istruzione, dell’Università e della Ricerca, la Regione Autonoma della Sardegna, l’Istituto Nazionale di Fisica Nucleare e l’Università degli Studi di Sassari finalizzato a sostenere la candidatura italiana a ospitare l’infrastruttura Einstein Telescope in Sardegna e al potenziamento di Virgo, and the University of Sassari that funded this project thanks to the Accordo di Programma tra la Regione Autonoma della Sardegna, l’Università degli Studi di Sassari, l’Istituto Nazionale di Fisica Nucleare, l’Istituto Nazionale di Geofisica e Vulcanologia, l’Università degli studi di Cagliari e l’IGEA S.p.a. finalizzato alla realizzazione nella Regione Autonoma della Sardegna di una infrastruttura a basso rumore sismico e antropico dedicata alla ricerca di base nell’ambito della rivelazione di onde gravitazionali, fisica della gravitazione, geofisica e sue applicazione (progetto SAR-GRAV). Intervento finanziato con risorse FSC 20142020 Patto per lo sviluppo della Regione Sardegna. The authors also acknowledge the Parco Geominerario Storico e Ambientale della Sardegna for its financial support. The authors’ grateful acknowledgment also goes to the contribution of the Fondi di Ateneo 2017 of Sapienza University of Rome and of the Fondi di Ateneo per la ricerca 2019 and Fondi di Ateneo per la ricerca 2020 of the University of Sassari.MDG gratefully acknowledges the support of the Italian Ministry of Education, University and Research within the PRIN 2017 Research Program Framework, no. 2017SYRTCN and INGV-Pisa for making their computational resources available. SK acknowledges the support through a collaboration agreement between Gran Sasso Science Institute and Nikhef and from the European Gravitational Observatory through a collaboration convention on Advanced Virgo +. JE would like to acknowledge the financial support of the International Research Agenda Programme AstroCeNT (MAB/2018/7) funded by the Foundation for Polish Science from the European Regional Development Fund and by the EU’s Horizon 2020 research and innovation program under grant agreement no. 952480 (DarkWave). MDG, SK and JE also acknowledge the use of the ETRepo computing cluster hosted by the Department of Physics of the University of Pisa (Italy).This study was conducted within the framework agreement between Istituto Nazionale di Fisica Nucleare (INFN) and Istituto Nazionale di Geofisica e Vulcanologia (INGV). The authors would also like to express their gratitude to INFN that funded this project thanks to the Protocollo di Intesa tra Ministero dell’Istruzione, dell’Università e della Ricerca, la Regione Autonoma della Sardegna, l’Istituto Nazionale di Fisica Nucleare e l’Università degli Studi di Sassari finalizzato a sostenere la candidatura italiana a ospitare l’infrastruttura Einstein Telescope in Sardegna e al potenziamento di Virgo, and the University of Sassari that funded this project thanks to the Accordo di Programma tra la Regione Autonoma della Sardegna, l’Università degli Studi di Sassari, l’Istituto Nazionale di Fisica Nucleare, l’Istituto Nazionale di Geofisica e Vulcanologia, l’Università degli studi di Cagliari e l’IGEA S.p.a. finalizzato alla realizzazione nella Regione Autonoma della Sardegna di una infrastruttura a basso rumore sismico e antropico dedicata alla ricerca di base nell’ambito della rivelazione di onde gravitazionali, fisica della gravitazione, geofisica e sue applicazione (progetto SAR-GRAV). Intervento finanziato con risorse FSC 20142020 Patto per lo sviluppo della Regione Sardegna. The authors also acknowledge the Parco Geominerario Storico e Ambientale della Sardegna for its financial support. The authors’ grateful acknowledgment also goes to the contribution of the Fondi di Ateneo 2017 of Sapienza University of Rome and of the Fondi di Ateneo per la ricerca 2019 and Fondi di Ateneo per la ricerca 2020 of the University of Sassari.
Abdikamalov, E. et al. 2020. Gravitational waves from core–collapse supernovae, in Handbook of Gravitational Wave Astronomy, pp. 909–946, Springer Singapore, Singapore.
Accadia, T. et al., 2010. Noise from scattered light in virgo’s second science run data, Class. Quantum Gravity, 27(19), 194011. doi: 10.1088/0264-9381/27/19/194011.
Acernese, F. et al., 2004. Properties of seismic noise at the virgo site, Class. Quantum Gravity, 21(5), S433. doi: 10.1088/0264-9381/21/5/008.
F. et al., 2014. Advanced virgo: a second-generation interferometric gravitational wave detector, Class. Quantum Gravity, 32(2), 024001. doi: 10.1088/0264-9381/32/2/024001.
Amann, F. et al., 2020. Site-selection criteria for the einstein telescope, Rev. Sci. Instrum., 91(9), 094504 . doi:10.1063/5.0018414.
R.E. et al., 2018. The widespread influence of great lakes microseisms across the midwestern united states revealed by the 2014 polar vortex, Geophys. Res. Lett., 45(8), 3436–3444.
R.E. et al., 2022. Seismic background noise levels across the continental United States from usarray transportable array: the influence of geology and geography, Bull. seism. Soc. Am., 112(2), 646–668.
Aouf,, L. et al., 2020. Product User Manual for Atlantic-Iberian Biscay-Irish Wave Analysis and Forecast Product, 31400 Toulouse, France.
F. et al., 2011. Ocean wave sources of seismic noise, J. geophys. Res., 116, C09004. doi: 10.1029/2011JC006952.
F. et al., 2019. Physics of ambient noise generation by ocean waves, in Seismic Ambient Noise, pp. 69–108, eds,Nakata, N., et al. Cambridge University Press, Cambridge.
Aster,, R.C. et al., 2008. Multidecadal climate-induced variability in microseisms, Seismol. Res. Lett., 79, 194–202.
M. et al., 2021. Gravitational-wave physics and astronomy in the 2020s and 2030s, Nat. Rev. Pys., 3, 344–366.
Baiotti,, L. 2020. Binary neutron stars, in Handbook of Gravitational Wave Astronomy, pp. 495–526, Springer, Singapore.
Barausse,, E. & Lapi,, A., 2020. Massive black-hole mergers, in Handbook of Gravitational Wave Astronomy, pp. 851–884, Springer, Singapore.
Beccaria,, C. et al., 1998. Relevance of newtonian seismic noise for the virgo interferometer sensitivity, Class. Quantum Gravity, 15(11), 3339. doi: 10.1088/0264-9381/15/11/004.
Beker, M.G. et al., 2012a. Newtonian noise and ambient ground motion for gravitational wave detectors, J. Phys.: Conf. Ser., 363, 012004. doi: 10.1088/1742-6596/363/1/012004.
MBeker,, .G. et al., 2012b. Seismic attenuation technology for the advanced virgo gravitational wave detector, Phys. Proc., 37, 1389–1397.
MBeker,, .G. et al., 2016. Innovations in seismic sensors driven by the search for gravitational waves, Leading Edge, 35(7), 590–593.
Beker,, M.G., van den Brand,, J.F.J. & Rabeling,, D.S., 2015. Subterranean ground motion studies for the Einstein Telescope, Class. Quantum Gravity, 32(2), 025002. doi: 10.1088/0264-9381/32/2/025002.
S. et al., 2006. The nature of noise wavefield and its applications for site effects studies: a literature review, Earth-Sci. Rev., 79(3–4), 205–227.
Braccini,, S. et al., 2000. The maraging-steel blades of the virgo super attenuator, Meas. Sci. Technol., 11(5), 467–476.
A. et al., 2008. Spectral analysis of seismic noise induced by rivers: A new tool to monitor spatiotemporal changes in stream hydrodynamics, J. geophys. Res.: Solid Earth, 113(B5), doi: 10.1029/2007JB005034.
Y. et al., 2021. Influence of temperature on the natural vibration characteristics of simply supported reinforced concrete beam, Sensors, 21, 4242. doi: 10.3390/s21124242.
Caprini,, C. & Figueroa,, D., 2020. Stochastic gravitational wave backgrounds of cosmological origin, in Handbook of Gravitational Wave Astronomy, pp. 1041–1094, Springer, Singapore.
L. et al., 2004. The internal northern appennines, the northern tyrrhenian sea and the sardinia-corsica block, in The Geology of Italy, pp. 59–67, Italian Geological Society.
R.K., 1994. Sources of primary and secondary microseisms, Bull. seism. Soc. Am., 84(1), 142–148.
S. et al., 2006. Source locations of secondary microseisms in western europe: evidence for both coastal and pelagic sources, J. geophys. Res., 112(B11), 301–320.
Coughlin,, M. et al., 2017. Limiting the effects of earthquakes on gravitational-wave interferometers, Class. Quantum Gravity, 34(4), 044004. doi: 10.1088/1361-6382/aa5a60.
D. et al., 2005. Characterizing seismic noise in the 2–20 hz band at a gravitational wave observatory, Rev. Sci. Instrum., 76(4), 044501. doi: 10.1063/1.1876952.
M. et al., 2021. A seismological study of the sos enattos area–the sardinia candidate site for the einstein telescope, Seismol. Res. Lett., 92(1), 352–364.
K.L. et al., 2020. Terrestrial laser interferometers, in Handbook of Gravitational Wave Astronomy, pp. 37–84, Springer, Singapore.
S.N. et al., 2019. Characteristics and Spatial Variability of Wind Noise on Near-Surface Broadband Seismometers, Bull. seism. Soc. Am, 109(3), 1082–1098.
A. et al., 2015. Environmental influences on the LIGO gravitational wave detectors during the 6th science run, Class. Quantum Gravity, 32(3), 035017, d oi:10.1088/0264-9381/32/3/035017.
A., 1916. Näherungsweise integration der feldgleichungen der gravitation, Sitzungsber. K. Preuss. Akad. Wiss., 1, 688–696, doi: 10.34663/9783945561317-04.
ET Science Team, 2010. The einstein telescope: a third-generation gravitational wave observatory, Class. Quantum Gravity, 27(19), 194002, doi: 10.1088/0264-9381/27/19/194002.
ET Science Team, 2011. Einstein Gravitational Wave Telescope Conceptual Design Study, III ET-0106A-10.
ET Science Team, 2020. Design Report Update for the Einstein Telescope, ET-0028A-20.
Eurostat, 2019. Eurostat Regional Yearbook, Publications Office of the European Union, Luxembourg.
C. et al., 2014. Mantle dynamics in the mediterranean, Rev. Geophys., 52, 282–332.
C.R. et al. , 1996, United States, Variability of modal parameters measured on the Alamosa Canyon Bridge, https://www.osti.gov/biblio/432967
I. et al., 2020a. Environmental noise in gravitational-wave interferometers, in Handbook of Gravitational Wave Astronomy, pp. 1–72, Springer, Singapore.
Fiori,, I. et al., 2020b. The hunt for environmental noise in virgo during the third observing run, Galaxies, 8(4), 82, doi: 10.3390/galaxies8040082.
R.L. et al., 1961. Upper limit for interstellar millicycle gravitational radiation, Nature, 189(4763), 473–473.
G.E., 1963. The nature of high-frequency earth noise spectra, Geophysics, 28(4), 547–562.
G., 2017. Statistical Models of I-15 Bridge C-846: Changes in Natural Frequencies due to Temperature, All Graduate Theses and Dissertations. 5260, Utah State University.
B., 1958. Microseisms, in Advances in Geophysics, Vol. 5, pp. 53–92, Elsevier.
N. et al., 2010. Distribution of noise sources for seismic interferometry, Geophys. J. Int., 183(3), 1470–1484.
J., 2019. Terrestrial gravity fluctuations, Living Rev. Relativ., 22(6), doi:10.1007/s41114-019-0022-2.
Harms,, J. et al., 2022. A lower limit for Newtonian-noise models of the Einstein Telescope, Eur. Phys. J. Plus, 137(6), 687, doi:10.1140/epjp/s13360-022-02851-z.
B. & K., 2020. Isolated neutron stars, in Handbook of Gravitational Wave Astronomy, pp. 527–554, Springer, Singapore.
T.D. & U., 2015. Cyclones, windstorms and the imilast project, Tellus A: Dynam. Meteorol. Oceanogr., 67(1), 27128, doi:10.3402/tellusa.v67.27128.
C.R. et al., 2017. Broadband seismic noise attenuation versus depth at the albuquerque seismological laboratory, Bull. seism. Soc. Am., 107(3), 1402–1412.
INGV Seismological Data Center, 2006. Rete sismica nazionale (rsn), Bull. Earthq. Eng., 13, 35533596, doi: 10.13127/sd/x0fxnh7qfy.
C.W. et al., 2019. Characteristics of ground motion generated by wind interaction with trees, structures, and other surface obstacles, J. geophys. Res.— Solid Earth, 124(8), 8519–8539.
C. et al., 2006. Monitoring gear vibrations through motor current signature analysis and wavelet transform, Mech. Syst. Signal Process., 20(1), 158–187.
S. et al., 2017. S-wave velocity model estimation using ambient seismic noise at virgo, italy, in SEG Technical Program Expanded Abstracts 2017, pp. 2946–2950, Society of Exploration Geophysicists.
Koley,, S., 2020. Sensor networks to measure environmental noise at gravitational wave detector sites, PhD thesis, Vrije Universiteit Amsterdam, Amsterdam.
Koley,, S., Bader,, M., van den Brand,, J., Campman,, X., Bulten,, H.J., Linde,, F. & Vink,, B., 2022. Surface and underground seismic characterization at terziet in limburg—the euregio meuse–rhine candidate site for einstein telescope, Class. Quantum Gravity, 39(2), 025008, doi: 10.1088/1361-6382/ac2b08.
K.D. & R., 2015. The fine structure of double-frequency microseisms recorded by seismometers in north america, J. geophys. Res.— Solid Earth, 120(3), 1677–1691.
G. et al., 2019. Product User Manual for Mediterranean Sea Waves Analysis and Forecasting Product, 1.3, CMEMS-MED-PUM-006-017.
LIGO and Virgo Collaboration, 2017a. Gw170817: observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett., 119, 161101, doi:10.1103/PhysRevLett.119.161101.
LIGO and Virgo Collaboration, 2017b. Multi-messenger observations of a binary neutron star merger, Astrophys. J., 848(2), L12, doi:10.3847/2041-8213/aa91c9.
LIGO and Virgo Collaboration, 2019. Gwtc-1: a gravitational-wave transient catalog of compact binary mergers observed by ligo and virgo during the first and second observing runs, Phys. Rev. X, 9, 031040, doi:10.1103/PhysRevX.9.03 1040.
M.S., 1950. A theory of the origin of microseisms, Phil. Trans. R. Soc. Lond., 243(1), 35, doi: 10.1098/rsta.1950.0012.
LVK Collaboration, 2021a. Gwtc-2: compact binary coalescences observed by ligo and virgo during the first half of the third observing run, Phys. Rev. X, 11, 021053, doi:10.1103/PhysRevX.11.021053.
LVK Collaboration, 2021b. Gwtc-3: Compact Binary Coalescences Observed by Ligo and Virgo during the Second Part of the Third Observing Run, preprint, arXiv:2111.03606.
F. et al., 2020. 3-d shear wave velocity model of the litosphere below the sardinia-corsica continental block based on rayleigh-wave phase velocities, Geophys. J. Int., 220, 2119–2130.
O.E. & J., 2020. Mapping seismic tonal noise in the contiguous united states, Seismol. Res. Lett., 91(3), 1707–1716.
Martynov,, D.V. et al., 2016. Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy, Phys. Rev. D, 93, 112004. doi:10.1103/PhysRevD.93.112004.
S.T.K. et al., 2003. Sea breeze: structure, forecasting, and impacts, Rev. Geophys., 41(3). doi:10.1029/2003RG000124.
Mukund,, N. et al. 2019a. Ground motion prediction at gravitational wave observatories using archival seismic data, Class. Quantum Gravity, 36(8), 085005. doi:10.1088/1361-6382/ab0d2c.
Mukund,, N. et al., 2019b. Effect of induced seismicity on advanced gravitational wave interferometers, Class. Quantum Gravity, 36(10), 10LT01, doi:10.1088/1361-6382/ab1360.
L. et al., 2014. Microseismic studies of an underground site for a new interferometric gravitational wave detector, Class. Quantum Grav., 31(105016), doi: 10.1088/0264-9381/31/10/105016.
L. et al., 2018. Sargrav: the sardinia underground laboratory, a first module for the einstein telescope infrastructure, in Proceedings of the 2018 Gravitational Wave Science & Technology Symposium, https://agenda.infn.it/event/14869/contributions/26929/attachments/19271/21813/SARGRAVGRASSLNat v2.pdf
L. et al., 2020. Characterization of the sos enattos site for the einstein telescope, J. Phys.: Conf. Ser., 1468(012242), doi: 10.1088/1742-6596/1468/1/012242.
J.R., 1993. Observations and modeling of seismic background noise, Tech. Rep. US Geological Survey.
D. et al., 2020. Covid-19 lockdown and its latency in northern italy: Seismic evidence and socio-economic interpretation, Sci. Rep., 10, 16487, doi: 10.1038/s41598-020-73102-3.
P. et al., 2020. The 2020 coronavirus lockdown and seismic monitoring of anthropic activities in northern italy, Sci. Rep., 10, 9404, doi: 10.1038/s41598-020-66368-0.
M. et al., 2010. The einstein telescope: a third-generation gravitational wave observatory, Class. Quantum Gravity, 27(19), 194002, doi:10.1088/0264-9381/27/19/194002.
G. et al., 2011. Seismic noise by wind farms: a case study from the virgo gravitational wave observatory, italy, Bull. seism. Soc. Am., 101(2), doi: 10.1785/0120100203.
P.R., 1984. Terrestrial gravitational noise on a gravitational wave antenna, Phys. Rev. D, 30(4), 732–736.
B.F., 1989. Gravitational wave sources and their detectability, Class. Quantum Gravity, 6(12), 1761–1780.
K., 1997. Comparison of measured microtremors with damage distribution, in JICA Research and Development Project on Earthquake Disaster Prevention, pp. 306–320, Tokyo, Japan.
K. & C., 2019. Seismic noise in central alaska and influences from rivers, wind, and sedimentary basins, J. geophys. Res.— Solid Earth, 124(11), 11678–11704.
E. et al., 2009. Global climate imprint on seismic noise, Geochem. Geophys. Geosys., 10(11), doi: 10.1029/2009GC002619.
M. & I., 2021. User Manual for Ocean Physical-wave Analysis and Forecast. CMEMS-NWS-PUM-004-013 014
UK Meteorological office, 2021. UK Storm Centre. https://www.metoffice.gov.uk/weather/warnings-and-advice/uk-storm-centre/index
Virgo Collaboration, 2004. Properties of seismic noise at the virgo site, Class. Quantum Gravity, 21(5), S433, doi: 10.1088/0264-9381/21/5/008.
Virgo Collaboration, 2006. Environmental noise studies at virgo, J. Phys. Conf. Ser., 32(1), 80, doi: 10.1088/1742-6596/32/1/013.
Virgo Collaboration, 2011a. Characterization of the Virgo Seismic Environment, preprint, arXiv:1108.1598.
Virgo Collaboration, 2011b. The seismic superattenuators of the virgo gravitational-wave interferometer, J. Low Freq. Noise Vibr. Active Contr., 30, 63–79.
Virgo Collaboration, 2022. The virgo o3 run and the impact of the environment, Class. Quantum Gravity, 39(23), 235009, doi:10.1088/1361-6382/ac776a.
R.L. et al., 2020. Research and development for third generation gravitational wave interferometers, in Handbook of Gravitational Wave Astronomy, pp. 37–84, Springer, Singapore.
H.S. & R., 1966. Wind-induced vibrations and building modes, Bull. seism. Soc. Am., 56(4), 793–813.
M.M. et al., 1996. High-frequency analysis of seismic background noise as a function of wind speed and shallow depth, Bull. seism. Soc. Am., 86(5), 1507–1515.
G.D. & T.H., 2014. A summary review of correlations between temperatures and vibration properties of long-span bridges, Math. Prob. Eng., 2014, 19, doi: 10.1155/2014/638209.