Article (Scientific journals)
A study of deep neural networks for Newtonian noise subtraction at Terziet in Limburg—the Euregio Meuse-Rhine candidate site for Einstein Telescope
van Beveren, Vincent; Bader, Maria; van den Brand, Jo et al.
2023In Classical and Quantum Gravity, 40 (20), p. 205008
Peer Reviewed verified by ORBi
 

Files


Full Text
van_Beveren_2023_Class._Quantum_Grav._40_205008.pdf
Author postprint (2.74 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Einstein Telescope; gravitational wave detection; machine learning; neural networks; Newtonian noise; noise cancellation; seismic noise; Physics and Astronomy (miscellaneous)
Abstract :
[en] The Euregio Meuse-Rhine border region of Belgium, Germany and the Netherlands has been identified as a candidate site for hosting Einstein Telescope. Newtonian coupling of ground vibrations to the core optics of the detectors may limit the sensitivity of Einstein Telescope at frequencies below about 10 Hz. The contribution of Newtonian noise is site specific and depends on the ambient seismic field which in turn depends on the site’s geology and the distribution of surface and underground seismic-noise sources. We have investigated the application of machine learning in combination with the deployment of seismic sensor networks to predict seismic displacement noise at specific locations on the surface and underground. Moreover we have modeled a deep neural network (DNN) that allows to subtract Newtonian noise from the strain data measured by Einstein Telescope. The seismic-field model is based on a complete solution of the elastodynamic wave equations for a horizontally-layered soil structure. The geology features soft-soil layers on hard-rock and was shown to be effective in attenuating Newtonian noise from surface waves below the required sensitivity. In addition our model includes a random background of body waves with all possible angles of incidence. We show that a DNN is effective in predicting Newtonian noise. Application of our DNN allows Newtonian noise subtraction by a factor up to 4.7 at 1 Hz and 2.5 at 5 Hz.
Disciplines :
Physics
Author, co-author :
van Beveren, Vincent ;  Nikhef, Science Park, Amsterdam, Netherlands
Bader, Maria;  Nikhef, Science Park, Amsterdam, Netherlands
van den Brand, Jo ;  Nikhef, Science Park, Amsterdam, Netherlands ; Maastricht University, Maastricht, Netherlands
Jan Bulten, Henk;  Nikhef, Science Park, Amsterdam, Netherlands
Campman, Xander ;  Shell Global Solutions International B.V., Den Haag, Netherlands
Koley, Soumen  ;  Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Ondes gravitationnelles ; Nikhef, Science Park, Amsterdam, Netherlands ; Gran Sasso Science Institute (GSSI), L’Aquila, Italy
Linde, Frank;  Nikhef, Science Park, Amsterdam, Netherlands
Language :
English
Title :
A study of deep neural networks for Newtonian noise subtraction at Terziet in Limburg—the Euregio Meuse-Rhine candidate site for Einstein Telescope
Publication date :
19 October 2023
Journal title :
Classical and Quantum Gravity
ISSN :
0264-9381
eISSN :
1361-6382
Publisher :
Institute of Physics
Volume :
40
Issue :
20
Pages :
205008
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
NWO - Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Funding text :
We acknowledge Netherlands Science Organisation NWO for their role in facilitating this research.
Available on ORBi :
since 31 December 2025

Statistics


Number of views
13 (0 by ULiège)
Number of downloads
13 (0 by ULiège)

Scopus citations®
 
4
Scopus citations®
without self-citations
3
OpenCitations
 
3
OpenAlex citations
 
4

Bibliography


Similar publications



Contact ORBi