A study of deep neural networks for Newtonian noise subtraction at Terziet in Limburg—the Euregio Meuse-Rhine candidate site for Einstein Telescope - 2023
Einstein Telescope; gravitational wave detection; machine learning; neural networks; Newtonian noise; noise cancellation; seismic noise; Physics and Astronomy (miscellaneous)
Abstract :
[en] The Euregio Meuse-Rhine border region of Belgium, Germany and the Netherlands has been identified as a candidate site for hosting Einstein Telescope. Newtonian coupling of ground vibrations to the core optics of the detectors may limit the sensitivity of Einstein Telescope at frequencies below about 10 Hz. The contribution of Newtonian noise is site specific and depends on the ambient seismic field which in turn depends on the site’s geology and the distribution of surface and underground seismic-noise sources. We have investigated the application of machine learning in combination with the deployment of seismic sensor networks to predict seismic displacement noise at specific locations on the surface and underground. Moreover we have modeled a deep neural network (DNN) that allows to subtract Newtonian noise from the strain data measured by Einstein Telescope. The seismic-field model is based on a complete solution of the elastodynamic wave equations for a horizontally-layered soil structure. The geology features soft-soil layers on hard-rock and was shown to be effective in attenuating Newtonian noise from surface waves below the required sensitivity. In addition our model includes a random background of body waves with all possible angles of incidence. We show that a DNN is effective in predicting Newtonian noise. Application of our DNN allows Newtonian noise subtraction by a factor up to 4.7 at 1 Hz and 2.5 at 5 Hz.
Disciplines :
Physics
Author, co-author :
van Beveren, Vincent ; Nikhef, Science Park, Amsterdam, Netherlands
Bader, Maria; Nikhef, Science Park, Amsterdam, Netherlands
van den Brand, Jo ; Nikhef, Science Park, Amsterdam, Netherlands ; Maastricht University, Maastricht, Netherlands
Jan Bulten, Henk; Nikhef, Science Park, Amsterdam, Netherlands
Campman, Xander ; Shell Global Solutions International B.V., Den Haag, Netherlands
Koley, Soumen ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Ondes gravitationnelles ; Nikhef, Science Park, Amsterdam, Netherlands ; Gran Sasso Science Institute (GSSI), L’Aquila, Italy
Linde, Frank; Nikhef, Science Park, Amsterdam, Netherlands
Language :
English
Title :
A study of deep neural networks for Newtonian noise subtraction at Terziet in Limburg—the Euregio Meuse-Rhine candidate site for Einstein Telescope
Punturo M et al 2010 The Einstein Telescope: a third-generation gravitational wave observatory Class. Quantum Grav. 27 194002 10.1088/0264-9381/27/19/194002
van den Brand J 2019 100 Years of General Relativity: Advanced Interferometeric Gravitational-Wave Detectors vol 5 World Scientific ch 6
Bader M Koley S van den Brand J Campman X Bulten H Linde F Vink B 2022 Newtonian-noise characterization at Terziet in Limburg—the Euregio Meuse-Rhine candidate site for Einstein Telescope Class. Quantum Grav. 39 025009 10.1088/1361-6382/ac1be4
Zhang H Wang D 2021 Deep ANC: a deep learning approach to active noise control Neural Netw. 141 1 10 1-10 10.1016/j.neunet.2021.03.037
Vajente G Huang Y Isi M Driggers J C Kissel J S Szczepańczyk M J Vitale S 2020 Machine-learning nonstationary noise out of gravitational-wave detectors Phys. Rev. D 101 042003 10.1103/PhysRevD.101.042003
Ormiston R Nguyen T Coughlin M Adhikari R X Katsavounidis E 2020 Noise reduction in gravitational-wave data via deep learning Phys. Rev. Res. 2 033066 10.1103/PhysRevResearch.2.033066
Badaracco F et al 2020 Machine learning for gravitational-wave detection: surrogate Wiener filtering for the prediction and optimized cancellation of Newtonian noise at Virgo Class. Quantum Grav. 37 195016 10.1088/1361-6382/abab64
Liu Q Fu L Zhang M 2021 Deep-seismic-prior-based reconstruction of seismic data using convolutional neural networks Geophysics 86 V131 42 V131-42 10.1190/geo2019-0570.1
Chollet F et al 2015 Keras (available at: https://keras.io)
Abadi M et al 2015 TensorFlow: large-scale machine learning on heterogeneous systems (available at: www.tensorflow.org/)
Hinton G E Srivastava N Krizhevsky A Sutskever I Salakhutdinov R R 2012 Improving neural networks by preventing co-adaptation of feature detectors (arXiv: 1207.0580[cs])
Clevert D-A Unterthiner T Hochreiter S 2016 Fast and accurate deep network learning by exponential linear units (ELUs) (arXiv: 1511.07289[cs])
Yu T Zhu H 2020 Hyper-parameter optimization: a review of algorithms and applications (arXiv: 2003.05689[cs, stat])
Koley S Bader M Brand J van den Campman X Bulten H J Linde F Vink B 2022 Surface and underground seismic characterization at Terziet in Limburg—the Euregio Meuse-Rhine candidate site for Einstein Telescope Class. Quantum Grav. 39 025008 10.1088/1361-6382/ac2b08
Peterson J R 1993 Observations and Modeling of Seismic Background Noise (USGS Numbered Series 93-322) U.S. Geological Survey
Geophone-based seismic sensor developed by Innoseis (available at: www.inovageo.com/products/quantum)
Dozat T 2016 Incorporating Nesterov Momentum into Adam (available at: https://openreview.net/forum?id = OM0jvwB8jIp57ZJjtNEZ) (Accessed 24 May 2022)
Li L Jamieson K DeSalvo G Rostamizadeh A Talwalkar A 2018 Hyperband: a novel bandit-based approach to hyperparameter optimization (arXiv: 1603.06560[cs, stat])
Keras Team 2019 Keras Documentation: KerasTuner (available at: https://keras.io/keras_tuner/)
Wiener N 2013 Extrapolation, Interpolation and Smoothing of Stationary Time Series, With Engineering Applications Wiley
Bader M K M 2021 Seismic and Newtonian noise modeling for Advanced Virgo and Einstein Telescope PhD Thesis VU University Amsterdam
KNMI—Koninklijk Nederlands Meteorologisch Instituut 1993 Data are publicly (available at: http://rdsa.knmi.nl/dataportal) for the sensors at Heimansgroeve (HGN) and at Terziet (TERZ)
Schevenels M François S Degrande G 2009 EDT: an ElastoDynamics toolbox for MATLAB Comput. Geosci. 35 1752 4 1752-4 10.1016/j.cageo.2008.10.012
Beker M et al 2016 Innovations in seismic sensors driven by the search for gravitational waves Leading Edge 35 590 3 590-3 10.1190/tle35070590.1
Goodfellow I Bengio Y Courville A 2016 Deep Learning MIT Press