ambient seismic noise; body wave background; Einstein telescope; Newtonian noise; underground seismic noise; Physics and Astronomy (miscellaneous)
Abstract :
[en] We present a detailed characterization of surface and underground seismic noise measured at Limburg in the south of the Netherlands. This location is the Euregio Meuse-Rhine candidate for hosting Einstein Telescope, a future observatory for gravitational waves. Seismic noise measurements were performed with an array of seismometers installed on the surface. Passive seismic methods like beamforming were used to extract the propagation wave types of ambient seismic noise and the Rayleigh-wave dispersion in the region. Subsurface shear-wave models sensitive to depths of 300 m were derived by using the Rayleigh-wave dispersion and ellipticity. Subsurface P-wave velocities to depths of 200 m were obtained from an active seismic survey. Wavepath Eikonal tomography was used on the source-receiver refracted-wave travel-times to obtain a subsurface P-wave velocity model. Both the passive and the active seismic data analysis point to the presence of a layered geology with a soft-soil to hard-rock transition occurring at a shallow depth of about 25 to 40 m. The surface arrays are complemented by two permanent tri-axial seismometers installed on the surface and in a borehole at 250 m depth. Their data are used to interpret the surface-wave and body-wave contributions to the observed seismic noise. We use a cross-correlation analysis and compute the theoretical surface-wave eigenfunctions to understand the contributions of the different wave types at different frequencies. We observe that below 4 Hz in the horizontal component and 9 Hz in the vertical component, the seismic noise at depth is dominantly due to surface waves. Above these frequencies a significant contribution can be attributed to both nearby and far-away body-wave sources. At a depth of 250 m we find that the surface noise power has been damped by up to a factor 104 above about 2 Hz. The Limburg geology with soft-soil on top of hard-rock efficiently damps the anthropogenic noise produced at the surface. This implies that Einstein Telescope's test masses are shielded from anthropogenic seismic noise and construction at greater depth will not bring significant further improvements in this regard. A body-wave background has been identified that contributes about half of the total underground seismic noise at 250 m depth for frequencies above 4 Hz. It remains to be studied if subtraction schemes for Newtonian noise originating from this body-wave background will be necessary. Finally, we estimate an interferometer downtime of about 3% due to regional and teleseismic earthquakes. We believe this is acceptable as it is comparable to current experience at the LIGO and Virgo interferometer sites.
Disciplines :
Physics
Author, co-author :
Koley, Soumen ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Ondes gravitationnelles ; Gran Sasso Science Institute (GSSI), L'Aquila, Italy ; Nikhef, Science Park, Amsterdam, Netherlands
Bader, Maria; Nikhef, Science Park, Amsterdam, Netherlands
Van Den Brand, Jo ; Nikhef, Science Park, Amsterdam, Netherlands ; Maastricht University, Maastricht, Netherlands
Campman, Xander ; Shell Global Solutions International BV, Netherlands
Punturo M et al 2010 Class. Quantum Grav. 27 194002
Hall E D et al 2021 Phys. Rev. D 103 122004
van den Brand J 2019 100 Years of General Relativity: Advanced Interferometric Gravitational-Wave Detectors vol 5 (Singapore: World Scientific) p 1
Hild S et al 2011 Class. Quantum Grav. 28 094013
Hughes S A and Thorne K S 1998 Phys. Rev. D 58 122002
Fiorucci D, Harms J, Barsuglia M, Fiori I and Paoletti F 2018 Phys. Rev. D 97 062003
Aasi J et al 2015 Class. Quantum Grav. 32 074001
Acernese F et al 2014 Class. Quantum Grav. 32 024001
Boschi V 2019 J. Acoust. Soc. Am. 145 1668
Acernese F et al 2010 Astropart. Phys. 33 182-9
Amann F et al 2020 Rev. Sci. Instrum. 91 094504
Bonnefoy-Claudet S, Cotton F and Bard P-Y 2006 Earth-Sci. Rev. 79 205-27
Koper K D, Seats K and Benz H 2010 Bull. Seismol. Soc. Am. 100 606-17
Harmon N, Gerstoft P, Rychert C A, Abers G A, Salas de La Cruz M and Fischer K M 2008 Geophys. Res. Lett. 35
Brooks L A, Townend J, Gerstoft P, Bannister S and Carter L 2009 Geophys. Res. Lett. 36 23
Koley S, Bulten H J, van den Brand J, Bader M, Campman X and Beker M 2017 S-wave velocity model estimation using ambient seismic noise at Virgo, Italy SEG Technical Program Expanded Abstracts 2017 2946-50
Lacoss R T, Kelly E J and Toksöz M N 1969 Geophysics 34 21-38
Campillo M and Paul A 2003 Science 299 547-9
Shapiro N M and Campillo M 2004 Geophys. Res. Lett. 31 7
Gouédard P et al 2008 Geophys. Prospect. 56 375-93
Yao H, Beghein C and Van Der Hilst R D 2008 Geophys. J. Int. 173 205-19
Kimman W P, Campman X and Trampert J 2012 Bull. Seismol. Soc. Am. 102 1388-99
Hannemann K, Papazachos C, Ohrnberger M, Savvaidis A, Anthymidis M and Lontsi A M 2014 J. Geophys. Res. Solid Earth 119 4979-99
Wang K, Luo Y and Yang Y 2016 Geophys. J. Int. 205 715-27
Wathelet M, Jongmans D and Ohrnberger M 2004 Near Surf. Geophys. 2 211-21
Ellis D V and Singer J M 2007 Well Logging for Earth Scientists vol 692 (Dordrecht: Springer)
Dunkin J W 1965 Bull. Seismol. Soc. Am. 55 335-58
Roth M, Holliger K and Green A G 1998 Geophys. Res. Lett. 25 1071-4
Sheehan J R, Doll W E and Mandell W A 2005 J. Environ. Eng. Geophys. 10 21-34
Song Y Y, Castagna J P, Black R A and Knapp R W 1989 Sensitivity of near-surface shear-wave velocity determination from Rayleigh and love waves SEG Technical Program Expanded Abstracts 1989 509-12
Asten M W and Henstridge J D 1984 Geophysics 49 1828-37
Woods J W and Lintz P R 1973 Geophysics 38 1023-41
Koley S, Bulten H J, van den Brand J, Bader M, Campman X and Beker M 2017 First Break 35 71-8
Mykkeltveit S and Kerr A U 1985 The VELA Program-A Twenty-Five Year Review of Basic Research vol 18 pp 546-53
Welch P 1967 IEEE Trans. Audio Electroacoust. 15 70-3
Longuet-Higgins M S 1950 Phil. Trans. R. Soc. A 243 1-35
Foti S et al 2018 Bull. Earthq. Eng. 16 2367-420
Merchant B J and Slad G W 2017 Next generation qualification: kinemetrics STS-5A seismometer evaluation (Albuquerque: Sandia National Laboratory (SNL-NM)) Technical Report
Kedar S, Longuet-Higgins M, Webb F, Graham N, Clayton R and Jones C 2008 Proc. R. Soc. A 464 777-93
Stutzmann E, Schimmel M, Patau G and Maggi A 2009 Geochem. Geophys. Geosyst. 10 11
Bader M, Koley S, van den Brand J, Campman X, Bulten H J, Linde F and Vink B 2021 Class. Quantum Grav. https://doi.org/10.1088/1361-6382/ac1be4
Acerra C, Havenith H B and Zacharopoulos S 2004 Guidelines for the implementation of the h/v spectral ratio technique on ambient vibrations measurements, processing and interpretation Technical Report
Konno K and Ohmachi T 1998 Bull. Seismol. Soc. Am. 88 228-41
Hobiger M, Bard P Y, Cornou C and Le Bihan N 2009 Geophys. Res. Lett. 36 14
Trautwein-Bruns U, Schulze K C, Becker S, Kukla P A and Urai J L 2010 Tectonophysics 493 196-211
Hinzen K, Reamer S K, Stein S and Mazzotti S 2007 Seismicity, Seismotectonics, and Seismic Hazard in the Northern Rhine Area vol 425 p 225 Special Papers
van Thienen-Visser K and Breunese J N 2015 Lead. Edge 34 664-71
Coughlin M et al 2017 Class. Quantum Grav. 34 044004
Schwartz E et al 2020 Class. Quantum Grav. 37 235007
Haskell N A 1953 Bull. Seismol. Soc. Am. 43 17-34
Killeen P G 1982 Gamma-ray logging and interpretation Developments in Geophysical Exploration Methods-3 (Netherlands: Springer) pp 95-150
Brannon H R Jr and Osoba J S 1956 Trans. AIME 207 30-5
Schlumberger C, Schlumberger M and Leonardon E G 1934 Trans. AIME 110 237-72
Thorez J, Streel M, Bouckaert J and Bless M 1977 Meded. Rijks Geol. Dienst 28 17-32
Sambridge M 1999 Geophys. J. Int. 138 479-94
Wathelet M, Jongmans D and Ohrnberger M 2005 Bull. Seismol. Soc. Am. 95 1787-800
Scherbaum F, Hinzen K-G and Ohrnberger M 2003 Geophys. J. Int. 152 597-612
Wright H E, Frey D G et al 1965 Int. Studies on the Quaternary: Papers Prepared on the Occasion of the 7th Congress of the Int. Association for Quaternary Research (Boulder, Colorado, 1965) vol 84
Bullock S J 1978 Environ. Eng. Geosci. 15 19-35
Baeten G J M 1989 Theoretical and practical aspects of the Vibroseis method PhD Thesis TU Delft
Wong J, Han L, Bancroft J and Stewart R 2009 Automatic time-picking of first arrivals on large seismic datasets CREWES, Univ. Calgary, Calgary, AB, Canada, Tech. Rep 26 14
Um J and Thurber C 1987 Bull. Seismol. Soc. Am. 77 972-86
Červen V and Soares J E P 1992 Geophysics 57 902-15
Woodward M J 1992 Geophysics 57 15-26
Schuster G T and Quintus-Bosz A 1993 Geophysics 58 1314-23
Qin F, Luo Y, Olsen K B, Cai W and Schuster G T 1992 Geophysics 57 478-87
Seriff A J, Velzeboer C J and Haase R J 1965 Geophysics 30 1187-90
Douze E J 1967 Bull. Seismol. Soc. Am. 57 55-81
Spica Z J, Nakata N, Liu X, Campman X, Tang Z and Beroza G C 2018 Seismol. Res. Lett. 89 1450-66