Electronic, Optical and Magnetic Materials; Atomic and Molecular Physics, and Optics; Condensed Matter Physics; Computer Networks and Communications; Physical and Theoretical Chemistry; Computational Theory and Mathematics; Electrical and Electronic Engineering
Abstract :
[en] This document presents a summary of the 2023 Terrestrial Very-Long-Baseline Atom Interferometry Workshop hosted by CERN. The workshop brought together experts from around the world to discuss the exciting developments in large-scale atom interferometer (AI) prototypes and their potential for detecting ultralight dark matter and gravitational waves. The primary objective of the workshop was to lay the groundwork for an international TVLBAI proto-collaboration. This collaboration aims to unite researchers from different institutions to strategize and secure funding for terrestrial large-scale AI projects. The ultimate goal is to create a roadmap detailing the design and technology choices for one or more kilometer–scale detectors, which will be operational in the mid-2030s. The key sections of this report present the physics case and technical challenges, together with a comprehensive overview of the discussions at the workshop together with the main conclusions.
Alonso, Ivan; Department of Industrial Engineering, Higher Polytechnic School, University of the Balearic Islands, Palma de Mallorca, Spain
Antoniadis, John; IFORTH Institute of Astrophysics, Heraklion, Greece
Araujo, Henrique; Physics Department, Imperial College, London, United Kingdom
Arduini, Gianluigi; CERN, Geneva 23, Switzerland
Arnold, Aidan S.; SUPA Department of Physics, University of Strathclyde, Glasgow, United Kingdom
Asano, Tobias; Institut fur € Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universitat € Ulm, Ulm, Germany
Augst, Nadja; Deutsches Zentrum fur € Luft- und Raumfahrt (DLR), Institut fur € Quantentechnologien, Ulm, Germany
Badurina, Leonardo; Physics Department, King’s College London, London, United Kingdom ; Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, United States
Balaz, Antun; Institute of Physics Belgrade, University of Belgrade, Belgrade, Serbia
Banks, Hannah; DAMTP, University of Cambridge, Cambridge, United Kingdom
Barone, Michele; Institute of Nuclear and Particle Physics, NCSR Demokritos, Agia Paraskevi, Greece
Barsanti, Michele; Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
Bassi, Angelo; Department of Physics, University of Trieste, Trieste, Italy ; Istituto Nazionale di Fisica Nucleare, Trieste Section, Trieste, Italy
Battelier, Baptiste; LP2N, Laboratoire Photonique, Numerique et Nanosciences, Universite Bordeaux–IOGS, CNRS, UMR 5298, Talence, France
Baynham, Charles F.A.; Physics Department, Imperial College, London, United Kingdom
Beaufils, Quentin; SYRTE, Observatoire de Paris, Universite PSL, CNRS, Sorbonne Universite, LNE, Paris, France
Belic, Aleksandar; Institute of Physics Belgrade, University of Belgrade, Belgrade, Serbia
Beniwal, Ankit; Physics Department, King’s College London, London, United Kingdom
Bernabeu, Jose; Department of Theoretical Physics, University of Valencia, Burjassot, Spain
Bertoldi, Andrea; LP2N, Laboratoire Photonique, Numerique et Nanosciences, Universite Bordeaux–IOGS, CNRS, UMR 5298, Talence, France
Biswas, Ikbal Ahamed; Department of Physics, Indian Institute of Technology Delhi, New Delhi, India
Blas, Diego; Grup de Física Teorica, Departament de Física, Universitat Autonoma de Barcelona, Barcelona, Spain ; Institut de Fisica d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, Barcelona, Spain
Boegel, Patrick; Institut fur € Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universitat € Ulm, Ulm, Germany
Bogojevic, Aleksandar; Institute of Physics Belgrade, University of Belgrade, Belgrade, Serbia
Bohringer, Samuel; Institut fur € Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universitat € Ulm, Ulm, Germany
Bongs, Kai; Deutsches Zentrum fur € Luft- und Raumfahrt (DLR), Institut fur € Quantentechnologien, Ulm, Germany ; University of Birmingham, Birmingham, United Kingdom
Bouyer, Philippe; Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Amsterdam, Netherlands ; QuSoft, Amsterdam, Netherlands ; Eindhoven University of Technology, Eindhoven, Netherlands
Brand, Christian; Deutsches Zentrum fur € Luft- und Raumfahrt (DLR), Institut fur € Quantentechnologien, Ulm, Germany
Brimis, Apostolos; Foundation for Research and Technology (FORTH), Institute of Electronic Structure and Lasers (IESL), Crete, Greece ; ITCP, Department of Physics, University of Crete, Heraklion, Greece
Buchmueller, Oliver; Physics Department, Imperial College, London, United Kingdom ; Department of Physics, University of Oxford, United Kingdom
Cacciapuoti, Luigi; European Space Agency, Noordwijk, Netherlands
Calatroni, Sergio; CERN, Geneva 23, Switzerland
Canuel, Benjamin; LP2N, Laboratoire Photonique, Numerique et Nanosciences, Universite Bordeaux–IOGS, CNRS, UMR 5298, Talence, France
Caprini, Chiara; CERN, Geneva 23, Switzerland
Caramete, Ana; Institute of Space Science - Subsidiary of INFLPR, Ilfov, Romania
Caramete, Laurentiu; Institute of Space Science - Subsidiary of INFLPR, Ilfov, Romania
Carlesso, Matteo; Department of Physics, University of Trieste, Trieste, Italy ; Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queens University, Belfast, United Kingdom
Carlton, John; Physics Department, King’s College London, London, United Kingdom
Casariego, Mateo; Instituto de Telecomunicações, Instituto Superior Tecnico, Lisboa, Portugal ; Physics of Information and Quantum Technologies Group, Centro de Física e Engenharia de Materiais Avançados (CeFEMA), Portugal
Charmandaris, Vassilis; Department of Physics, University of Crete, Greece and Institute of Astrophysics, FORTH, Greece and European University, Cyprus, Cyprus
Chen, Yu-Ao; School of Physical Sciences, University of Science and Technology of China, Hefei, China
Chiofalo, Maria Luisa; Department of Physics, University of Pisa, INFN, Pisa, Italy
Cimbri, Alessia; Physics Department, Imperial College, London, United Kingdom
Coleman, Jonathon; Department of Physics, University of Liverpool, Merseyside, United Kingdom
Constantin, Florin Lucian; Laboratoire PhLAM, CNRS UMR 8523, Villeneuve d’Ascq, France
Contaldi, Carlo R.; Physics Department, Imperial College, London, United Kingdom
Cui, Yanou; Department of Physics and Astronomy, University of California, Riverside, United States
Ros, Elisa Da; Institut fur € Physik, Humboldt-Universitat € zu Berlin, Berlin, Germany
Davies, Gavin; Physics Department, Imperial College, London, United Kingdom
Rosendo, Esther del Pino; Johannes Gutenberg University, Mainz, Germany
Deppner, Christian; Deutsches Zentrum fur € Luft- und Raumfahrt (DLR), Institut fur € Satellitengeodasie € und Inertialsensorik, Hannover, Germany
Derevianko, Andrei; Department of Physics, University of Nevada, Reno, United States
de Rham, Claudia; Physics Department, Imperial College, London, United Kingdom
Eby, Joshua; Department of Physics, Stockholm University, Stockholm, Sweden
Efremov, Maxim; Deutsches Zentrum fur € Luft- und Raumfahrt (DLR), Institut fur € Quantentechnologien, Ulm, Germany
Ekelof, Tord; FREIA Laboratory Division, Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
Elertas, Gedminas; Department of Physics, University of Liverpool, Merseyside, United Kingdom
Ellis, John; Physics Department, King’s College London, London, United Kingdom
Evans, David; Physics Department, Imperial College, London, United Kingdom
Fadeev, Pavel; Johannes Gutenberg University, Mainz, Germany
Fanì, Mattia; Los Alamos National Laboratory, Los Alamos, United States
Fassi, Farida; Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
Fattori, Marco; Department of Physics and Astronomy, University of Firenze, Sesto Fiorentino, Italy
Fayet, Pierre; Laboratoire de physique de l’ENS, Ecole Normale Superieure-PSL, CNRS, Sorbonne Universite, Universite Paris Cite, Paris, France ; CPhT, Ecole polytechnique, IPP, Palaiseau, France
Felea, Daniel; Institute of Space Science - Subsidiary of INFLPR, Ilfov, Romania
Feng, Jie; School of Science, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
Friedrich, Alexander; Institut fur € Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universitat € Ulm, Ulm, Germany
Gao, Dongfeng; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
Gardner, Susan; Department of Physics and Astronomy, University of Kentucky, Lexington, United States
Garraway, Barry; Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
Hanımeli, Ekim T.; ZARM Center of Applied Space Technology and Microgravity, Universitat € Bremen, Bremen, Germany
Harte, Tiffany; Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
Hawkins, Leonie; Department of Physics, University of Liverpool, Merseyside, United Kingdom
Hees, Aurelien; SYRTE, Observatoire de Paris, Universite PSL, CNRS, Sorbonne Universite, LNE, Paris, France
Heise, Jaret; Sanford Underground Research Facility, Lead, United States
Henderson, Victoria A.; Institut fur € Physik, Humboldt-Universitat € zu Berlin, Berlin, Germany
Herrmann, Sven; ZARM Center of Applied Space Technology and Microgravity, Universitat € Bremen, Bremen, Germany
Hird, Thomas M.; Department of Physics, University of Oxford, United Kingdom
Hogan, Jason M.; Department of Physics, Stanford University, Stanford, United States
Holst, Bodil; Department of Physics and Technology, University of Bergen, Bergen, Norway
Holynski, Michael; University of Birmingham, Birmingham, United Kingdom
Hussain, Kamran; Department of Physics, University of Liverpool, Merseyside, United Kingdom
Janson, Gregor; Institut fur € Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universitat € Ulm, Ulm, Germany
Jeglic, Peter; Jozef Stefan Institute, Ljubljana, Slovenia
Jelezko, Fedor; Institut fur € Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universitat € Ulm, Ulm, Germany
Kagan, Michael; Fundamental Physics Directorate, SLAC National Accelerator Laboratory, Menlo Park, United States
Kalliokoski, Matti; Detector Laboratory, Helsinki Institute of Physics, University of Helsinki, Helsinki, Finland
Kasevich, Mark; Department of Physics, Stanford University, Stanford, United States
Kehagias, Alex; Physics Division, National Technical University of Athens, Athens, Greece
Kilian, Eva; Department of Physics and Astronomy, University College London, London, United Kingdom
Koley, Soumen ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Ondes gravitationnelles ; Department of Physics, Gran Sasso Science Institute, L’Aquila, Italy
Konrad, Bernd; Deutsches Zentrum fur € Luft- und Raumfahrt (DLR), Institut fur € Quantentechnologien, Ulm, Germany
Kopp, Joachim; CERN, Geneva 23, Switzerland ; Johannes Gutenberg University, Mainz, Germany ; PRISMA Cluster of Excellence, Mainz Institute for Theoretical Physics, Johannes Gutenberg University, Mainz, Germany
Kornakov, Georgy; Warsaw University of Technology, Faculty of Physics, Warszawa, Poland
Kovachy, Tim; Department of Physics and Astronomy, Center for Fundamental Physics, Northwestern University, Evanston, United States
Kumar, Mukesh; School of Physics, Institute for Collider Particle Physics, University of the Witwatersrand, Johannesburg, South Africa
Kumar, Pradeep; Experimental Condensed Matter Physics Group, Ultrafast Coherent Spectroscopy Laboratory, Indian Institute of Science Education and Research, Bhopal, India
Lammerzahl, Claus; ZARM Center of Applied Space Technology and Microgravity, Universitat € Bremen, Bremen, Germany
Landsberg, Greg; Department of Physics, Brown University, Providence, United States
Langlois, Mehdi; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, United States
Lanigan, Bryony; Physics Department, Imperial College, London, United Kingdom
Lellouch, Samuel; University of Birmingham, Birmingham, United Kingdom
Leone, Bruno; Optoelectronics Section, Directorate of Technology, Engineering and Quality, European Space Agency, ECSAT, Harwell Campus, Didcot, United Kingdom
Le Poncin-Lafitte, Christophe; SYRTE, Observatoire de Paris, Universite PSL, CNRS, Sorbonne Universite, LNE, Paris, France
Lewicki, Marek; Faculty of Physics, University of Warsaw, Warsaw, Poland
Luciano, Giuseppe Gaetano; Department of Chemistry, Physics and Environmental and Soil Sciences, Escola Politecninca Superior, Universidad de Lleida, Lleida, Spain
Mahmoud, M.A.; Center for High Energy Physics (CHEP-FU), Fayoum University, El-Fayoum, Egypt
Mustecapl, E.; Koç University, Department of Physics, Turkey ; TUBITAK, Research Institute for Fundamental Sciences, Gebze, Turkey
Ni, Wei-Tou; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
Noller, Johannes; Department of Physics and Astronomy, University College London, London, United Kingdom ; Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, United Kingdom
Odzak, Senad; University of Sarajevo - Faculty of Science, Sarajevo, Bosnia and Herzegovina
Daniel, K.L.; SUPA Department of Physics, University of Strathclyde, Glasgow, United Kingdom ; Walton Institute for Information and Communication Systems Science, South East Technological University, Waterford, Ireland
Omar, Yasser; Instituto de Telecomunicações, Instituto Superior Tecnico, Lisboa, Portugal ; Physics of Information and Quantum Technologies Group, Centro de Física e Engenharia de Materiais Avançados (CeFEMA), Portugal ; PQI, Portuguese Quantum Institute, Lisbon, Portugal
Pikovski, Igor; Department of Physics, Stockholm University, Stockholm, Sweden ; Department of Physics, Stevens Institute of Technology, Hoboken, United States
Pilaftsis, Apostolos; Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
Plunkett, Robert; Fermi National Accelerator Laboratory, Batavia, United States
Poggiani, Rosa; Dipartimento di Fisica “Enrico Fermi”, Universita di Pisa, Pisa, Italy
Prevedelli, Marco; Department of Physics and Astronomy, University of Bologna, Bologna, Italy
Puputti, Julia; Callio Lab, Kerttu Saalasti Institute, University of Oulu, Oulu, Finland
Veettil, Vishnupriya Puthiya; Foundation for Research and Technology (FORTH), Institute of Electronic Structure and Lasers (IESL), Crete, Greece
Quenby, John; Physics Department, Imperial College, London, United Kingdom
Rafelski, Johann; Department of Physics, The University of Arizona, Tucson, United States
Rajendran, Surjeet; Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, United States
Rasel, Ernst M.; Leibniz Universitat € Hannover, Hannover, Germany
Sfar, Haifa Rejeb; Department of Physics, University at Buffalo, Buffalo, United States
Schleich, Wolfgang P.; Institut fur € Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universitat € Ulm, Ulm, Germany ; Institute for Quantum Science and Engineering (IQSE), Texas A&M AgriLife Research, Hagler Institute for Advanced Study, Texas A&M University, College Station, United States
Schneider, Ulrich; Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
Schreck, Florian; Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Amsterdam, Netherlands
Schubert, Christian; Deutsches Zentrum fur € Luft- und Raumfahrt (DLR), Institut fur € Satellitengeodasie € und Inertialsensorik, Hannover, Germany
Schwersenz, Nico; Deutsches Zentrum fur € Luft- und Raumfahrt (DLR), Institut fur € Quantentechnologien, Ulm, Germany
Semakin, Aleksei; Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, Turku, Finland
Sergijenko, Olga; Main Astronomical Observatory, the National Academy of Sciences of Ukraine, Kyiv, Ukraine ; AGH University of Krakow, Krakow, Poland
Shao, Lijing; Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing, China
Shipsey, Ian; Department of Physics, University of Oxford, United Kingdom
Singh, Rajeev; Center for Nuclear Theory, Department of Physics and Astronomy, Stony Brook University, Stony Brook, United States
Smerzi, Augusto; QSTAR, INO-CNR and LENS, Firenze, Italy
Sopuerta, Carlos F.; Institut de Ciencies de l’Espai (ICE, CSIC), Campus UAB, Cerdanyola del Valles, Spain ; Institut d’Estudis Espacials de Catalunya (IEEC), Barcelona, Spain
Spallicci, Alessandro D.A.M.; Universite d’Orleans, Laboratoire de Physique et Chimie de l’Environnement et de l’Espace, Orleans, France
Stefanescu, Petruta; Institute of Space Science - Subsidiary of INFLPR, Ilfov, Romania
Stergioulas, Nikolaos; Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
Strohle, Jannik; Institut fur € Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universitat € Ulm, Ulm, Germany
Tentindo, Silvia; High Energy Physics Group, Department of Physics, Florida State University, Tallahassee, United States
Throssell, Henry; Department of Physics, University of Liverpool, Merseyside, United Kingdom
Tino, Guglielmo M.; Department of Physics and Astronomy, University of Firenze, Sesto Fiorentino, Italy
Tinsley, Jonathan N.; Department of Physics, University of Liverpool, Merseyside, United Kingdom
Mircea, Ovidiu Tintareanu; Institute of Space Science - Subsidiary of INFLPR, Ilfov, Romania
Tkalcec, Kimberly; Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
Tolley, Andrew J.; Physics Department, Imperial College, London, United Kingdom
Tornatore, Vincenza; Politecnico di Milano, DICA, Geodetic and Geomatics, Milano, Italy
Torres-Orjuela, Alejandro; TianQin Center for Gravitational Physics, Sun Yat-Sen University (Zhuhai Campus), Zhuhai, China
Treutlein, Philipp; Department of Physics, University of Basel, Basel, Switzerland
Trombettoni, Andrea; Department of Physics, University of Trieste, Trieste, Italy
Tsai, Yu-Dai; University of California, Irvine, United States
Ufrecht, Christian; Self-Learning Systems Group, Fraunhofer IIS, Nuremberg, Germany
Ulmer, Stefan; Institute for Experimental Physics, Heinrich Heine University, Dusseldorf, Dusseldorf, Germany
Valuch, Daniel; Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava, Bratislava, Slovakia
Vaskonen, Ville; INFN Sezione di Padova, Padova, Italy ; Keemilise ja Bioloogilise Fu€usika € Instituut, Tallinn, Estonia ; Dipartimento di Fisica e Astronomia, Universita degli Studi di Padova, Padova, Italy
Vazquez-Aceves, Veronica; Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing, China
Vitanov, Nikolay V.; Center for Quantum Technologies, Department of Physics, Sofia University, Sofia, Bulgaria
Vogt, Christian; BIAS, Institute of Applied Beam Technology, Bremen, Germany
von Klitzing, Wolf; Foundation for Research and Technology (FORTH), Institute of Electronic Structure and Lasers (IESL), Crete, Greece
Vukics, Andras; HUN-REN Wigner Research Centre for Physics, Budapest, Hungary
Wang, Jin; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
Warburton, Niels; School of Mathematics and Statistics, University College Dublin, Belfield, Ireland
Webber-Date, Alexander; Department of Physics, University of Liverpool, Merseyside, United Kingdom
Wenzlawski, Andre; Johannes Gutenberg University, Mainz, Germany
Williams, Jason; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, United States
Windpassinger, Patrick; Johannes Gutenberg University, Mainz, Germany
Wolf, Peter; SYRTE, Observatoire de Paris, Universite PSL, CNRS, Sorbonne Universite, LNE, Paris, France
Woerner, Lisa; Deutsches Zentrum fur € Luft- und Raumfahrt (DLR), Institut fur € Satellitengeodasie € und Inertialsensorik, Hannover, Germany
Xuereb, Andre; Department of Physics, University of Malta, Msida, Malta
Yahia, Mohamed E.; Abu Dhabi Polytechnic, Institute of Applied Technology, Abu Dhabi, United Arab Emirates
Cruzeiro, Emmanuel Zambrini; Instituto de Telecomunicações, Instituto Superior Tecnico, Lisboa, Portugal
Zarei, Moslem; Department of Physics, Isfahan University of Technology, Isfahan, Iran
Zhan, Mingsheng; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
Zhou, Lin; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
Zupan, Jure; Department of Physics, University of Cincinnati, Cincinnati, United States
Zupanic, Erik; Jozef Stefan Institute, Ljubljana, Slovenia
Tobias Asano, Samuel B\u00F6hringer, Fabio Di Pumpo, Alexander Friedrich, Eric P. Glasbrenner, Gregor Janson, Fedor Jelezko, Wolfgang P. Schleich, and Jannik Str\u00F6hle were supported by the Scientific Network Center for Integrated Quantum Science and Technology (IQST).The MAGIS-100 experiment is Fermilab project E-1101 (FERMILAB-TM-2700-PPD, FERMILAB-CONF-23-430-ETD), which consists of a collaboration of 9 universities and national laboratories, and is funded by the US DOE Quantized program, the Gordon and Betty Moore Foundation, the UK STFC, and the Kavli Foundation. To carry it out it is necessary to build and install at Fermilab a next-generation instrument that uses light-pulse atom interferometry to search for physics beyond the Standard Model. MAGIS-100 will exploit the existing \u223C100 m vertical MINOS access shaft and will be an upgrade of the existing 10 m scale experiment at Stanford with greatly increased sensitivity due to its increased length.
S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. S. Johnson, and M. A. Kasevich, Phys. Rev. Lett. 111, 083001 (2013).
M. Abe, P. Adamson, M. Borcean, D. Bortoletto, K. Bridges, S. P. Carman et al., Quantum Sci. Technol. 6, 044003 (2021).
B. Canuel, A. Bertoldi, L. Amand, E. Pozzo di Borgo, T. Chantrait, C. Danquigny et al., Sci. Rep. 8, 14064 (2018).
D. Schlippert, C. Meiners, R. Rengelink, C. Schubert, D. Tell, E. Wodey et al., “Matter-wave interferometry for inertial sensing and tests of fundamental physics,” in Proceedings of the Eighth Meeting on CPT and Lorentz Symmetry (World Scientific, 2020), pp. 37–40.
L. Badurina, E. Bentine, D. Blas, K. Bongs, D. Bortoletto, T. Bowcock et al., J. Cosmol. Astropart. Phys. 2020, 11.
L. Zhou, Z. Y. Xiong, W. Yang, B. Tang, W. C. Peng, K. Hao et al., Gen. Relativ. Gravitation 43, 1931 (2011).
M.-S. Zhan, J. Wang, W.-T. Ni, D.-F. Gao, G. Wang, L.-X. He et al., Int. J. Mod. Phys. D 29, 1940005 (2020).
B. Canuel, S. Abend, P. Amaro-Seoane, F. Badaracco, Q. Beaufils, A. Bertoldi et al., Classical Quantum Gravity 37, 225017 (2020).
Y. A. El-Neaj, C. Alpigiani, S. Amairi-Pyka, H. Araujo, A. Balaz, A. Bassi et al., EPJ Quantum Technol. 7, 6 (2020).
CERN, see https://indico.cern.ch/event/830432/ for “Workshop on Atomic Experiments for Dark Matter and Gravity Exploration.”
CERN, see https://indico.cern.ch/event/1064855/ for “Community Workshop on Cold Atoms in Space.”
I. Alonso, C. Alpigiani, B. Altschul, H. Araujo, G. Arduini, J. Arlt et al., EPJ Quantum Technol. 9, 30 (2022).
13F. Zwicky, Gen. Relativ. Gravitation 41, 207 (2009).
F. Zwicky, Astrophys. J. 86, 217 (1937).
V. C. Rubin and W. K. Ford, Jr., Astrophys. J. 159, 379 (1970).
G. Bertone and D. Hooper, Rev. Mod. Phys. 90, 045002 (2018).
P. W. Graham, D. E. Kaplan, J. Mardon, S. Rajendran, and W. A. Terrano, Phys. Rev. D 93, 075029 (2016).
P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran, Phys. Rev. Lett. 110, 171102 (2013).
B. Abbott, R. Abbott, T. Abbott, M. Abernathy, F. Acernese, K. Ackley et al., Phys. Rev. Lett. 116, 061102 (2016).
T. Akutsu, M. Ando, K. Arai, Y. Arai, S. Araki, A. Araya et al., Prog. Theor. Exp. Phys. 2021, 05A103.
NANOGrav collaboration, Astrophys. J. Lett. 951, L8 (2023).
EPTA collaboration, “The second data release from the European Pulsar Timing Array III. Search for gravitational wave signals,” arXiv:2306.16214 2023.
PPTA collaboration, Astrophys. J. Lett. 951, L6 (2023).
LISA Collaboration, “Laser interferometer space antenna,” arXiv:1702.00786 2017.
J. Luo, L.-S. Chen, H.-Z. Duan, Y.-G. Gong, S. Hu, J. Ji et al., Classical Quantum Gravity 33, 035010 (2016).
W.-H. Ruan, Z.-K. Guo, R.-G. Cai, and Y.-Z. Zhang, Int. J. Mod. Phys. A 35, 2050075 (2020).
M. A. Sedda, C. P. L. Berry, K. Jani, P. Amaro-Seoane, P. Auclair, J. Baird et al., Classical Quantum Gravity 37, 215011 (2020).
M. Bilardello, S. Donadi, A. Vinante, and A. Bassi, Physica A 462, 764 (2016).
C. Overstreet, P. Asenbaum, J. Curti, M. Kim, and M. A. Kasevich, Science 375, 226 (2022).
L. Morel, Z. Yao, P. Clade, and S. Guellati-Khelifa, Nature 588, 61 (2020).
P. Asenbaum, C. Overstreet, M. Kim, J. Curti, and M. A. Kasevich, Phys. Rev. Lett. 125, 191101 (2020).
L. De Broglie, Ann. Phys. 10, 22 (1925).
C. Davisson and L. H. Germer, Phys. Rev. 30, 705 (1927).
G. P. Thomson and A. Reid, Nature 119, 890 (1927).
I. Estermann and O. Stern, Z. Phys. 61, 95 (1930).
O. Carnal and J. Mlynek, Phys. Rev. Lett. 66, 2689 (1991).
D. W. Keith, C. R. Ekstrom, Q. A. Turchette, and D. E. Pritchard, Phys. Rev. Lett. 66, 2693 (1991).
F. Riehle, T. Kisters, A. Witte, J. Helmcke, and C. J. Borde, Phys. Rev. Lett. 67, 177 (1991).
M. Kasevich and S. Chu, Phys. Rev. Lett. 67, 181 (1991).
A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, Rev. Mod. Phys. 81, 1051 (2009).
O. Buchmueller, J. Ellis, and U. Schneider, “Large-Scale Atom Interferometry for Fundamental Physics,” arXiv:2306.17726 2023.
L. Zehnder, Z. Instrumentenkd. 11, 275 (1891).
L. Mach, Z. Instrumentenkd. 12, 89 (1892).
L. Badurina, O. Buchmueller, J. Ellis, M. Lewicki, C. McCabe, and V. Vaskonen, Philos. Trans. R. Soc. A 380, 035 (2022).
J. R. Peterson, Observations and Modeling of Seismic Background Noise (U.S. Geological Survey, 1993).
LIGO scientific and Virgo collaboration, Phys. Rev. D 104, 022004 (2021).
J. Aasi, B. P. Abbott, R. Abbott, T. Abbott, M. R. Abernathy, K. Ackley et al., Classical Quantum Gravity 32, 074001 (2015).
M. Maggiore, C. V. D. Broeck, N. Bartolo, E. Belgacem, D. Bertacca, M. A. Bizouard et al., J. Cosmol. Astropart. Phys. 2020, 050.
F. Combes, “Science with SKA,” arXiv:2107.03915 2021.
NANOGrav collaboration, Astrophys. J. Lett. 951, L9 (2023).
52NANOGrav collaboration, Astrophys. J. Lett. 951, L11 (2023).
53NANOGrav collaboration, Astrophys. J. Lett. 952, L37 (2023).
54EPTA collaboration, “The second data release from the European Pulsar Timing Array I. The dataset and timing analysis,” arXiv:2306.16224 2023.
55EPTA collaboration, “The second data release from the European Pulsar Timing Array IV. Search for continuous gravitational wave signals,” arXiv:2306.16226 2023.
56EPTA collaboration, “The second data release from the European Pulsar Timing Array: V. Implications for massive black holes, dark matter and the early Universe,” arXiv:2306.16227 2023.
57PPTA collaboration, Astrophys. J. Lett. 951, L7 (2023).
58PPTA collaboration, “The Parkes Pulsar Timing Array Third Data Release,” arXiv:2306.16230 2023.
59A. Bertoldi, K. Bongs, P. Bouyer, O. Buchmueller, B. Canuel, L.-I. Caramete et al., Exp. Astron. 51, 1417 (2021).
60K. Yagi and N. Seto, Phys. Rev. D 83, 044011 (2011).
61S. Kawamura, M. Ando, N. Seto, S. Sato, M. Musha, I. Kawano et al., Prog. Theor. Exp. Phys. 2021, 05A105.
62P. Auclair, D. Bacon, T. Baker, T. Barreiro, N. Bartolo, E. Belgacem et al., Living Rev. Relativ. 26, 131102 (2023).
63M. Hindmarsh, S. J. Huber, K. Rummukainen, and D. J. Weir, Phys. Rev. Lett. 112, 041301 (2014).
64M. Hindmarsh, S. J. Huber, K. Rummukainen, and D. J. Weir, Phys. Rev. D 92, 123009 (2015).
65M. Hindmarsh, S. J. Huber, K. Rummukainen, and D. J. Weir, Phys. Rev. D 96, 103520 (2017).
66C. Caprini, M. Hindmarsh, S. Huber, T. Konstandin, J. Kozaczuk, G. Nardini et al., J. Cosmol. Astropart. Phys. 2016, 001.
67C. Caprini, M. Chala, G. C. Dorsch, M. Hindmarsh, S. J. Huber, T. Konstandin et al., J. Cosmol. Astropart. Phys. 2020, 024.
68J. J. Blanco-Pillado and K. D. Olum, Phys. Rev. D 96, 104046 (2017).
69J. J. Blanco-Pillado, K. D. Olum, and X. Siemens, Phys. Lett. B 778, 392 (2018).
70P. Auclair, J. J. Blanco-Pillado, D. G. Figueroa, A. C. Jenkins, M. Lewicki, M. Sakellariadou et al., J. Cosmol. Astropart. Phys. 2020, 034.
71J. Ellis, M. Fairbairn, G. Hutsi, € J. Raidal, J. Urrutia, V. Vaskonen et al., “Gravitational waves from SMBH Binaries in light of the NANOGrav 15-year data,” arXiv:2306.17021 2023.
72J. Ellis and M. Lewicki, Phys. Rev. Lett. 126, 041304 (2021).
73S. Blasi, V. Brdar, and K. Schmitz, Phys. Rev. Lett. 126, 041305 (2021).
74J. J. Blanco-Pillado, K. D. Olum, and J. M. Wachter, Phys. Rev. D 103, 103512 (2021).
75J. Ellis, M. Lewicki, C. Lin, and V. Vaskonen, “Cosmic superstrings revisited in light of NANOGrav 15-year data,” arXiv:2306.17147 2023.
76NANOGrav collaboration, Astrophys. J. Lett. 905, L34 (2020).
77L. Badurina, A. Beniwal, and C. McCabe, “Super-Nyquist ultralight dark matter searches with broadband atom gradiometers,” arXiv:2306.16477 2023.
78P. Touboul, G. Metris, M. Rodrigues, J. Berge, A. Robert, Q. Baghi et al., Phys. Rev. Lett. 129, 121102 (2022).
79A. Hees, O. Minazzoli, E. Savalle, Y. V. Stadnik, and P. Wolf, Phys. Rev. D 98, 064051 (2018).
81A. A. Geraci and A. Derevianko, Phys. Rev. Lett. 117, 261301 (2016).
82A. Arvanitaki, P. W. Graham, J. M. Hogan, S. Rajendran, and K. Van Tilburg, Phys. Rev. D 97, 075020 (2018).
83P. W. Graham, D. E. Kaplan, J. Mardon, S. Rajendran, W. A. Terrano, L. Trahms et al., Phys. Rev. D 97, 055006 (2018).
84A. Derevianko, Phys. Rev. A 97, 042506 (2018).
85A. Arvanitaki, J. Huang, and K. Van Tilburg, Phys. Rev. D 91, 015015 (2015).
86L. Badurina, D. Blas, and C. McCabe, Phys. Rev. D 105, 023006 (2022).
87P. Fayet, Phys. Rev. D 97, 055039 (2018).
88P. Fayet, Phys. Rev. D 99, 055043 (2019).
89P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran, Phys. Rev. D 94, 104022 (2016).
90S. Weinberg, Ann. Phys. 194, 336 (1989).
91J. Polchinski, Phys. Rev. Lett. 66, 397 (1991).
92D. E. Kaplan and S. Rajendran, Phys. Rev. D 105, 055002 (2022).
93M. Polkovnikov, A. V. Gramolin, D. E. Kaplan, S. Rajendran, and A. O. Sushkov, Phys. Rev. Lett. 130, 040202 (2023).
94J. Broz, B. You, S. Khan, H. H€affner, D. E. Kaplan, and S. Rajendran, Phys. Rev. Lett. 130, 200201 (2023).
95D. N. Page and C. D. Geilker, Phys. Rev. Lett. 47, 979 (1981).
96S. W. Hawking, Commun. Math. Phys. 87, 395 (1982).
97J. Ellis, J. S. Hagelin, D. Nanopoulos, and M. Srednicki, Nucl. Phys. B 241, 381 (1984).
98G. C. Ghirardi, A. Rimini, and T. Weber, Phys. Rev. D 34, 470 (1986).
99L. Diosi, Phys. Lett. A 120, 377 (1987).
100S. L. Adler, Quantum Theory as an Emergent Phenomenon (Cambridge University Press, 2004).
101A. J. Leggett, Science 307, 871 (2005).
102S. Weinberg, “The trouble with quantum mechanics,” The New York Review of Books (Rea S. Hederman, 2017), Vol. 19.
103S. L. Adler and A. Bassi, Science 325, 275 (2009).
104A. Bassi and G. Ghirardi, Phys. Rep. 379, 257 (2003).
105A. Bassi, K. Lochan, S. Satin, T. P. Singh, and H. Ulbricht, Rev. Mod. Phys. 85, 471 (2013).
106A. Perez, H. Sahlmann, and D. Sudarsky, Classical Quantum Gravity 23, 2317 (2006).
107S. J. Landau, C. G. Scoccola, and D. Sudarsky, Phys. Rev. D 85, 123001 (2012).
108S. Das, K. Lochan, S. Sahu, and T. P. Singh, Phys. Rev. D 88, 085020 (2013).
109T. Josset, A. Perez, and D. Sudarsky, Phys. Rev. Lett. 118, 021102 (2017).
110J. Martin and V. Vennin, Phys. Rev. Lett. 124, 080402 (2020).
111A. Gundhi, J. Gaona-Reyes, M. Carlesso, and A. Bassi, Phys. Rev. Lett. 127, 091302 (2021).
112G. R. Bengochea, G. Leon, P. Pearle, and D. Sudarsky, Eur. Phys. J. C 80, 1021 (2020).
113C. Jones, T. Guaita, and A. Bassi, Phys. Rev. A 103, 042216 (2021).
114C. Jones, G. Gasbarri, and A. Bassi, J. Phys. A 54, 295306 (2021).
115P. Pearle, Phys. Rev. A 39, 2277 (1989).
116G. C. Ghirardi, P. Pearle, and A. Rimini, Phys. Rev. A 42, 78 (1990).
117M. Arndt and K. Hornberger, Nat. Phys. 10, 271 (2014).
118M. Carlesso, S. Donadi, L. Ferialdi, M. Paternostro, H. Ulbricht, and A. Bassi, Nat. Phys. 18, 243 (2022).
119R. Penrose, Gen. Relativ. Gravitation 28, 581 (1996).
120R. Penrose, Found. Phys. 44, 557 (2014).
121L. Diosi, Phys. Rev. A 40, 1165 (1989).
122A. Vinante and H. Ulbricht, AVS Quantum Sci. 3, 045602 (2021).
123S. Donadi, K. Piscicchia, C. Curceanu, L. Diosi, M. Laubenstein, and A. Bassi, Nat. Phys. 17, 74 (2021).
124Y. Y. Fein, P. Geyer, P. Zwick, F. Kiałka, S. Pedalino, M. Mayor et al., Nat. Phys. 15, 1242 (2019).
125G. Gasbarri, A. Belenchia, M. Carlesso, S. Donadi, A. Bassi, R. Kaltenbaek et al., Commun. Phys. 4, 155 (2021).
126T. Kovachy, J. M. Hogan, A. Sugarbaker, S. M. Dickerson, C. A. Donnelly, C. Overstreet et al., Phys. Rev. Lett. 114, 143004 (2015).
127F. Di Pumpo, A. Friedrich, A. Geyer, C. Ufrecht, and E. Giese, Phys. Rev. D 105, 084065 (2022).
128S. Dimopoulos, P. W. Graham, J. M. Hogan, and M. A. Kasevich, Phys. Rev. D 78, 042003 (2008).
129J. M. Hogan, D. M. S. Johnson, S. Dickerson, T. Kovachy, A. Sugarbaker, S.-W. Chiow et al., Gen. Relativ. Gravitation 43, 1953 (2011).
130P. Storey and C. Cohen-Tannoudji, J. Phys. II France 4, 1999 (1994).
131K.-P. Marzlin and J. Audretsch, Phys. Rev. A 53, 312 (1996).
132C. Antoine and C. Borde, Phys. Lett. A 306, 277 (2003).
133S. Kleinert, E. Kajari, A. Roura, and W. P. Schleich, Phys. Rep. 605, 1 (2015).
134A. Bertoldi, F. Minardi, and M. Prevedelli, Phys. Rev. A 99, 033619 (2019).
135C. Ufrecht and E. Giese, Phys. Rev. A 101, 053615 (2020).
136A. Wicht, E. Sarajlic, J. M. Hensley, and S. Chu, Phys. Rev. A 72, 023602 (2005).
137I. Riou, N. Mielec, G. Lefevre, M. Prevedelli, A. Landragin, P. Bouyer et al., J. Phys. B 50, 155002 (2017).
138S. Hartmann, J. Jenewein, E. Giese, S. Abend, A. Roura, E. M. Rasel et al., Phys. Rev. A 101, 053610 (2020).
139J.-N. Siemß, F. Fitzek, S. Abend, E. M. Rasel, N. Gaaloul, and K. Hammerer, Phys. Rev. A 102, 033709 (2020).
140J.-N. Kirsten-Siemß, F. Fitzek, C. Schubert, E. Rasel, N. Gaaloul, and K. Hammerer, Phys. Rev. Lett. 131, 033602 (2023).
141T. Damour and J. F. Donoghue, Phys. Rev. D 82, 084033 (2010).
142W.-T. Ni, Phys. Rev. Lett. 38, 301 (1977).
143W.-T. Ni, Rep. Prog. Phys. 73, 056901 (2010).
144P. Sikivie, Phys. Rev. Lett. 113, 201301 (2014).
145L. Di Luzio, M. Giannotti, E. Nardi, and L. Visinelli, Phys. Rep. 870, 1 (2020).
146R. T. Co, A. Pierce, Z. Zhang, and Y. Zhao, Phys. Rev. D 99, 075002 (2019).
147A. Filippi and M. De Napoli, Rev. Phys. 5, 100042 (2020).
148T. Damour and A. M. Polyakov, Gen. Relativ. Gravitation 26, 1171 (1994).
149A. Roura, Phys. Rev. X 10, 021014 (2020).
150F. Di Pumpo, C. Ufrecht, A. Friedrich, E. Giese, W. P. Schleich, and W. G. Unruh, PRX Quantum 2, 040333 (2021).
151F. Di Pumpo, A. Friedrich, C. Ufrecht, and E. Giese, Phys. Rev. D 107, 064007 (2023).
152D. Schlippert, J. Hartwig, H. Albers, L. Richardson, C. Schubert, A. Roura et al., Phys. Rev. Lett. 112, 203002 (2014).
153D. M. Giltner, R. W. McGowan, and S. A. Lee, Phys. Rev. Lett. 75, 2638 (1995).
154J. Rudolph, T. Wilkason, M. Nantel, H. Swan, C. M. Holland, Y. Jiang et al., Phys. Rev. Lett. 124, 083604 (2020).
155I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, Nat. Photonics 9, 185 (2015).
156B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang et al., Nature 506, 71 (2014).
157G. E. Marti, R. B. Hutson, A. Goban, S. L. Campbell, N. Poli, and J. Ye, Phys. Rev. Lett. 120, 103201 (2018).
158C. J. Kennedy, E. Oelker, J. M. Robinson, T. Bothwell, D. Kedar, W. R. Milner et al., Phys. Rev. Lett. 125, 201302 (2020).
159R. Foot, H. Lew, and R. R. Volkas, J. Phys. G 19, 361 (1993).
160R. Foot, Phys. Rev. D 49, 3617 (1994).
161C. S. Unnikrishnan and G. T. Gillies, Metrologia 41, S125 (2004).
162K. Durstberger-Rennhofer, T. Jenke, and H. Abele, Phys. Rev. D 84, 036004 (2011).
163G. Bressi, G. Carugno, F. Della Valle, G. Galeazzi, G. Ruoso, and G. Sartori, Phys. Rev. A 83, 052101 (2011).
164J. Gillot, S. Lepoutre, A. Gauguet, M. Buchner, € and J. Vigue, Phys. Rev. Lett. 111, 030401 (2013).
165J. Gillot, S. Lepoutre, A. Gauguet, J. Vigue, and M. Buchner, € Eur. Phys. J. D 68, 168 (2014).
166C. Champenois, M. Buchner, € R. Delhuille, R. Mathevet, C. Robilliard, C. Rizzo et al., “Matter neutrality test using a Mach-Zehnder interferometer,” in The Hydrogen Atom (Springer, Berlin, Heidelberg, 2001), pp. 554–563.
167A. Arvanitaki, S. Dimopoulos, A. A. Geraci, J. Hogan, and M. Kasevich, Phys. Rev. Lett. 100, 120407 (2008).
168Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).
169S. Sengupta, Phys. Lett. B 484, 275 (2000).
170C. Caprini and P. G. Ferreira, J. Cosmol. Astropart. Phys. 2005, 006.
171S. Sengupta and P. B. Pal, Phys. Lett. B 365, 175 (1996).
172G. G. Raffelt, Phys. Rep. 320, 319 (1999).
173E. Witten, Phys. Lett. B 86, 283 (1979).
174D. Dubbers and M. G. Schmidt, Rev. Mod. Phys. 83, 1111 (2011).
175J. Ellis and V. Vaskonen, Phys. Rev. D 101, 124013 (2020).
176A. Nishizawa, A. Sesana, E. Berti, and A. Klein, Mon. Not. R. Astron. Soc. 465, 4375 (2016).
177V. Cardoso, C. F. Macedo, and R. Vicente, Phys. Rev. D 103, 023015 (2021).
178G. Franciolini, R. Cotesta, N. Loutrel, E. Berti, P. Pani, and A. Riotto, Phys. Rev. D 105, 063510 (2022).
179Z. Xuan, S. Naoz, and X. Chen, Phys. Rev. D 107, 043009 (2023).
180K. Inayoshi, N. Tamanini, C. Caprini, and Z. Haiman, Phys. Rev. D 96, 063014 (2017).
181A. Toubiana, L. Sberna, A. Caputo, G. Cusin, S. Marsat, K. Jani et al., Phys. Rev. Lett. 126, 101105 (2021).
182L. Sberna, S. Babak, S. Marsat, A. Caputo, G. Cusin, A. Toubiana et al., Phys. Rev. D 106, 064056 (2022).
183S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran, Phys. Lett. B 678, 37 (2009).
184J. G. Baker and J. I. Thorpe, Phys. Rev. Lett. 108, 211101 (2012).
185F. Vetrano and A. Vicere, Eur. Phys. J. C 73, 2590 (2013).
186J. Harms, B. J. J. Slagmolen, R. X. Adhikari, M. C. Miller, M. Evans, Y. Chen et al., Phys. Rev. D 88, 122003 (2013).
187J. Mitchell, T. Kovachy, S. Hahn, P. Adamson, and S. Chattopadhyay, J. Instrum. 17, P01007 (2022).
188J. Harms, Living Rev. Relativ. 22, 6 (2019).
189S. A. Hughes and K. S. Thorne, Phys. Rev. D 58, 122002 (1998).
190L. Badurina, V. Gibson, C. McCabe, and J. Mitchell, Phys. Rev. D 107, 055002 (2023).
191M. Coughlin, J. Harms, N. Christensen, V. Dergachev, R. DeSalvo, S. Kandhasamy et al., Classical Quantum Gravity 31, 215003 (2014).
192P. W. Graham and S. Jung, Phys. Rev. D 97, 024052 (2018).
193J. Zhao, L. Shao, Y. Gao, C. Liu, Z. Cao, and B.-Q. Ma, Phys. Rev. D 104, 084008 (2021).
194R. Maiolino et al., “JADES. The diverse population of infant Black Holes at 4 < z < 11: Merging, tiny, poor, but mighty,” arXiv:2308.01230 2023.
195A. Torres-Orjuela, S.-J. Huang, Z.-C. Liang, S. Liu, H.-T. Wang, C.-Q. Ye et al., “Detection of astrophysical gravitational wave sources by TianQin and LISA,” arXiv:2307.16628 2023.
196J. Ellis, M. Fairbairn, G. Hutsi, € M. Raidal, J. Urrutia, V. Vaskonen et al., Astron. Astrophys. 676, A38 (2023).
197J. E. Greene, Nat. Commun. 3, 1304 (2012).
198PPTA collaboration, Astrophys. J. Lett. 917, L19 (2021).
199EPTA collaboration, Mon. Not. R. Astron. Soc. 508, 4970 (2021).
200IPTA collaboration, Mon. Not. R. Astron. Soc. 510, 4873 (2022).
201J. Ellis, M. Fairbairn, G. Franciolini, G. Hutsi, € A. Iovino, M. Lewicki et al., “What is the source of the PTA GW signal?,” arXiv:2308.08546 2023.
202K. G. Arun, E. Belgacem, R. Benkel, L. Bernard, E. Berti, G. Bertone et al., Living Rev. Relativ. 25, 4 (2022).
203P. Amaro Seoane, M. Arca Sedda, S. Babak, C. P. L. Berry, E. Berti, G. Bertone et al., Gen. Relativ. Gravitation 54, 3 (2022).
204R. Brito, V. Cardoso, and P. Pani, Superradiance (Springer International Publishing, 2015).
205L. Tsukada, R. Brito, W. E. East, and N. Siemonsen, Phys. Rev. D 103, 083005 (2021).
206R. Brito, S. Ghosh, E. Barausse, E. Berti, V. Cardoso, I. Dvorkin et al., Phys. Rev. D 96, 064050 (2017).
207E. Barausse, V. Cardoso, and P. Pani, Phys. Rev. D 89, 104059 (2014).
208L. Annulli, V. Cardoso, and R. Vicente, Phys. Rev. D 102, 063022 (2020).
209V. Cardoso and A. Maselli, Astron. Astrophys. 644, A147 (2020).
210A. Coogan, G. Bertone, D. Gaggero, B. J. Kavanagh, and D. A. Nichols, Phys. Rev. D 105(4), 043009 (2022).
211V. Cardoso and P. Pani, Living Rev. Relativ. 22, 4 (2019).
212H. Banks, D. M. Grabowska, and M. McCullough, Phys. Rev. D 108, 035017 (2023).
213N. Yunes and F. Pretorius, Phys. Rev. D 80, 122003 (2009).
214N. Yunes, K. Yagi, and F. Pretorius, Phys. Rev. D 94, 084002 (2016).
215Z. Carson and K. Yagi, “Testing general relativity with gravitational waves,” in Handbook of Gravitational Wave Astronomy, edited by C. Bambi, S. Katsanevas, and K. D. Kokkotas (Springer Singapore, Singapore, 2020), pp. 1–33.
216M. Bauer and J. D. Shergold, J. Cosmol. Astropart. Phys. 2023, 003.
217R. Alonso, D. Blas, and P. Wolf, J. High Energy Phys. 2019, 69.
218Y. Du, C. Murgui, K. Pardo, Y. Wang, and K. M. Zurek, Phys. Rev. D 106, 095041 (2022).
219V. Domcke and M. Spinrath, J. Cosmol. Astropart. Phys. 2017, 055.
220C. Xue, J.-P. Liu, Q. Li, J.-F. Wu, S.-Q. Yang, Q. Liu et al., Natl. Sci. Rev. 7, 1803 (2020).
221A. Bertoldi, G. Lamporesi, L. Cacciapuoti, M. de Angelis, M. Fattori, T. Petelski et al., Eur. Phys. J. D 40, 271 (2006).
222J. B. Fixler, G. T. Foster, J. M. McGuirk, and M. A. Kasevich, Science 315, 74 (2007).
223G. D’Amico, G. Rosi, S. Zhan, L. Cacciapuoti, M. Fattori, and G. Tino, Phys. Rev. Lett. 119, 253201 (2017).
224M. Jaffe, P. Haslinger, V. Xu, P. Hamilton, A. Upadhye, B. Elder et al., Nat. Phys. 13, 938 (2017).
225D. O. Sabulsky, I. Dutta, E. A. Hinds, B. Elder, C. Burrage, and E. J. Copeland, Phys. Rev. Lett. 123, 061102 (2019).
226H. Liu, B. D. Elwood, M. Evans, and J. Thaler, Phys. Rev. D 100, 023548 (2019).
227I. Obata, T. Fujita, and Y. Michimura, Phys. Rev. Lett. 121, 161301 (2018).
228N. Aggarwal, O. D. Aguiar, A. Bauswein, G. Cella, S. Clesse, A. M. Cruise et al., Living Rev. Relativ. 24, 4 (2021).
231R. Ballantini et al., “Microwave apparatus for gravitational waves observation,” arXiv:gr-qc/0502054 2005.
232A. Berlin, D. Blas, R. T. D’Agnolo, S. A. Ellis, R. Harnik, Y. Kahn et al., Phys. Rev. D 105, 116011 (2022).
233A. Berlin, D. Blas, R. Tito D’Agnolo, S. A. R. Ellis, R. Harnik, Y. Kahn et al., “MAGO 2.0: Electromagnetic cavities as mechanical bars for gravitational waves,” arXiv:2303.01518 2023.
234V. Domcke, C. Garcia-Cely, and N. L. Rodd, Phys. Rev. Lett. 129, 041101 (2022).
235T. Bringmann, V. Domcke, E. Fuchs, and J. Kopp, “High-frequency gravitational wave detection via optical frequency modulation,” arXiv:2304.10579 2023.
236P. R. Berman, Atom Interferometry (Academic Press, 1997).
237J. M. McGuirk, M. J. Snadden, and M. A. Kasevich, Phys. Rev. Lett. 85, 4498 (2000).
238L. Hu, N. Poli, L. Salvi, and G. M. Tino, Phys. Rev. Lett. 119, 263601 (2017).
239T. Wilkason, M. Nantel, J. Rudolph, Y. Jiang, B. E. Garber, H. Swan et al., Phys. Rev. Lett. 129, 183202 (2022).
240T. Wilkason, “Clock atom interferometry for precision measurements in fundamental physics,” Ph.D. thesis (Stanford University, Stanford, CA, 2022).
241R. H. Parker, C. Yu, W. Zhong, B. Estey, and H. Muller, € Science 360, 191 (2018).
242B. Canuel et al., “Technologies for the ELGAR large scale atom interferometer array,” arXiv:2007.04014 2020.
243F. Fitzek, J.-N. Kirsten-Siemß, E. M. Rasel, N. Gaaloul, and K. Hammerer, “Accurate and efficient Bloch-oscillation-enhanced atom interferometry,” arXiv:2306.09399 2023.
244T. Rahman, A. Wirth-Singh, A. Ivanov, D. Gochnauer, E. Hough, and S. Gupta, “Bloch oscillation phases investigated by multi-path Stuckelberg atom interferometry,” arXiv:2308.04134 2023.
245S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran, Phys. Rev. D 78, 122002 (2008).
246W. Chaibi, R. Geiger, B. Canuel, A. Bertoldi, A. Landragin, and P. Bouyer, Phys. Rev. D 93, 021101 (2016).
247C. Schubert, D. Schlippert, S. Abend, E. Giese, A. Roura, W. P. Schleich et al., “Scalable, symmetric atom interferometer for infrasound gravitational wave detection,” arXiv:1909.01951 2019.
248J. E. Debs, P. A. Altin, T. H. Barter, D. D€oring, G. R. Dennis, G. McDonald et al., Phys. Rev. A 84, 033610 (2011).
249A. Louchet-Chauvet, T. Farah, Q. Bodart, A. Clairon, A. Landragin, S. Merlet et al., New J. Phys. 13, 065025 (2011).
250S. S. Szigeti, J. E. Debs, J. J. Hope, N. P. Robins, and J. D. Close, New J. Phys. 14, 023009 (2012).
251S. Loriani, D. Schlippert, C. Schubert, S. Abend, H. Ahlers, W. Ertmer et al., New J. Phys. 21, 063030 (2019).
252S. Loriani, C. Schubert, D. Schlippert, W. Ertmer, F. Pereira Dos Santos, E. M. Rasel et al., Phys. Rev. D 102, 124043 (2020).
253M. Gebbe, J.-N. Siemß, M. Gersemann, H. Muntinga, € S. Herrmann, C. L€ammerzahl et al., Nat. Commun. 12, 2544 (2021).
254A. Gauguet, B. Canuel, T. Leveque, W. Chaibi, and A. Landragin, Phys. Rev. A 80, 063604 (2009).
255J. K. Stockton, K. Takase, and M. A. Kasevich, Phys. Rev. Lett. 107, 133001 (2011).
256Z.-K. Hu, B.-L. Sun, X.-C. Duan, M.-K. Zhou, L.-L. Chen, S. Zhan et al., Phys. Rev. A 88, 043610 (2013).
257P. Berg, S. Abend, G. Tackmann, C. Schubert, E. Giese, W. P. Schleich et al., Phys. Rev. Lett. 114, 063002 (2015).
258G. W. Biedermann, X. Wu, L. Deslauriers, S. Roy, C. Mahadeswaraswamy, and M. A. Kasevich, Phys. Rev. A 91, 033629 (2015).
259P. Hamilton, M. Jaffe, J. M. Brown, L. Maisenbacher, B. Estey, and H. Muller, € Phys. Rev. Lett. 114, 100405 (2015).
260S.-W. Chiow, J. Williams, and N. Yu, Phys. Rev. A 93, 013602 (2016).
261C. Freier, M. Hauth, V. Schkolnik, B. Leykauf, M. Schilling, H. Wziontek et al., J. Phys. 723, 012050 (2016).
262P. Gillot, B. Cheng, A. Imanaliev, S. Merlet, and F. P. D. Santos, “The LNE-SYRTE cold atom gravimeter,” in European Frequency and Time Forum (EFTF) (IEEE, 2016).
263Y. Bidel, N. Zahzam, C. Blanchard, A. Bonnin, M. Cadoret, A. Bresson et al., Nat. Commun. 9, 627 (2018).
264C. Janvier, V. Menoret, B. Desruelle, S. Merlet, A. Landragin, and F. Pereira dos Santos, Phys. Rev. A 105, 022801 (2022).
265R. Gautier, M. Guessoum, L. A. Sidorenkov, Q. Bouton, A. Landragin, and R. Geiger, Sci. Adv. 8, 708 (2022).
266N. Yu and M. Tinto, Gen. Relativ. Gravitation 43, 1943 (2011).
267Q. Beaufils, L. A. Sidorenkov, P. Lebegue, B. Venon, D. Holleville, L. Volodimer et al., Sci. Rep. 12, 19000 (2022).
268J. Rudolph, W. Herr, C. Grzeschik, T. Sternke, A. Grote, M. Popp et al., New J. Phys. 17, 065001 (2015).
269H. Ammann and N. Christensen, Phys. Rev. Lett. 78, 2088 (1997).
270E. W. Streed, A. P. Chikkatur, T. L. Gustavson, M. Boyd, Y. Torii, D. Schneble et al., Rev. Sci. Instrum. 77, 023106 (2006).
271C. Deppner, W. Herr, M. Cornelius, P. Stromberger, T. Sternke, C. Grzeschik et al., Phys. Rev. Lett. 127, 100401 (2021).
272R. Corgier, S. Amri, W. Herr, H. Ahlers, J. Rudolph, D. Guery-Odelin et al., New J. Phys. 20, 055002 (2018).
273N. Gaaloul, M. Meister, R. Corgier, A. Pichery, P. Boegel, W. Herr et al., Nat. Commun. 13, 7889 (2022).
274K. Hardman, P. Everitt, G. McDonald, P. Manju, P. Wigley, M. Sooriyabandara et al., Phys. Rev. Lett. 117, 138501 (2016).
275R. Roy, A. Green, R. Bowler, and S. Gupta, Phys. Rev. A 93, 043403 (2016).
276G. Condon, M. Rabault, B. Barrett, L. Chichet, R. Arguel, H. Eneriz-Imaz et al., Phys. Rev. Lett. 123, 240402 (2019).
277C. Vogt, M. Woltmann, S. Herrmann, C. L€ammerzahl, H. Albers, D. Schlippert et al., Phys. Rev. A 101, 013634 (2020).
278H. Albers, R. Corgier, A. Herbst, A. Rajagopalan, C. Schubert, C. Vogt et al., Commun. Phys. 5, 60 (2022).
279A. Herbst, H. Albers, K. Stolzenberg, S. Bode, and D. Schlippert, Phys. Rev. A 106, 043320 (2022).
280L. Hu, E. Wang, L. Salvi, J. N. Tinsley, G. M. Tino, and N. Poli, Classical Quantum Gravity 37, 014001 (2019).
281N. Poli, M. Schioppo, S. Vogt, S. Falke, U. Sterr, C. Lisdat et al., Appl. Phys. B 117, 1107 (2014).
282S. Stellmer, F. Schreck, and T. C. Killian, “Degenerate quantum gases of strontium,” in Annual Review of Cold Atoms and Molecules (World Scientific, 2014).
283C.-C. Chen, R. Gonzalez Escudero, J. Minar, B. Pasquiou, S. Bennetts, and F. Schreck, Nature 606, 683 (2022).
284S.-W. Chiow, S. Herrmann, S. Chu, and H. Muller, € Phys. Rev. Lett. 103, 050402 (2009).
285B. Estey, C. Yu, H. Muller, € P.-C. Kuan, and S.-Y. Lan, Phys. Rev. Lett. 115, 083002 (2015).
286A. Urvoy, Z. Vendeiro, J. Ramette, A. Adiyatullin, and V. Vuletic, Phys. Rev. Lett. 122, 203202 (2019).
287L. Salvi, N. Poli, V. Vuletic, and G. M. Tino, Phys. Rev. Lett. 120, 033601 (2018).
288R. Corgier, N. Gaaloul, A. Smerzi, and L. Pezze, Phys. Rev. Lett. 127, 183401 (2021).
289B. K. Malia, J. Martínez-Rincon, Y. Wu, O. Hosten, and M. A. Kasevich, Phys. Rev. Lett. 125, 043202 (2020).
290F. Anders, A. Idel, P. Feldmann, D. Bondarenko, S. Loriani, K. Lange et al., Phys. Rev. Lett. 127, 140402 (2021).
291G. P. Greve, C. Luo, B. Wu, and J. K. Thompson, Nature 610, 472 (2022).
292C.-H. Feng, P. Robert, P. Bouyer, B. Canuel, J. Li, S. Das et al., “Compact and high flux strontium atom source,” arXiv:2310.00657 2023.
293A. Roura, Phys. Rev. Lett. 118, 160401 (2017).
294C. Overstreet, P. Asenbaum, T. Kovachy, R. Notermans, J. M. Hogan, and M. A. Kasevich, Phys. Rev. Lett. 120, 183604 (2018).
295B. Dubetsky and M. A. Kasevich, Phys. Rev. A 74, 023615 (2006).
296S.-Y. Lan, P.-C. Kuan, B. Estey, P. Haslinger, and H. Muller, € Phys. Rev. Lett. 108, 090402 (2012).
297J. Glick, Z. Chen, T. Deshpande, Y. Wang, and T. Kovachy, “Coriolis force compensation and laser beam delivery for 100-m baseline atom interferometry” AVS Quantum Science 6(1), 014402 (2024).
298S. Dickerson, J. M. Hogan, D. M. S. Johnson, T. Kovachy, A. Sugarbaker, S.-W. Chiow et al., Rev. Sci. Instrum. 83, 065108 (2012).
299E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling et al., Rev. Sci. Instrum. 91, 035117 (2020).
300G. Arduini et al., “A long-baseline atom interferometer at CERN: Conceptual feasibility study,” arXiv:2304.00614 2023.
301A. Sugarbaker, S. M. Dickerson, J. M. Hogan, D. M. S. Johnson, and M. A. Kasevich, Phys. Rev. Lett. 111, 113002 (2013).
302E. Wodey, R. J. Rengelink, C. Meiners, E. M. Rasel, and D. Schlippert, J. Phys. B 54, 035301 (2021).
303J. Hartwig, S. Abend, C. Schubert, D. Schlippert, H. Ahlers, K. Posso-Trujillo et al., New J. Phys. 17, 035011 (2015).
304T. Kovachy, P. Asenbaum, C. Overstreet, C. A. Donnelly, S. M. Dickerson, A. Sugarbaker et al., Nature 528, 530 (2015).
305A. Lezeik, D. Tell, K. Zipfel, V. Gupta, E. Wodey, E. Rasel et al., “Understanding the gravitational and magnetic environment of a very long baseline atom interferometer,” arXiv:2209.08886 2022.
306M. Schilling, E. Wodey, L. Timmen, D. Tell, K. H. Zipfel, D. Schlippert et al., J. Geod. 94, 122 (2020).
307L. L. Richardson, A. Rajagopalan, H. Albers, C. Meiners, D. Nath, C. Schubert et al., Commun. Phys. 3, 208 (2020).
308S. Loriani, A. Friedrich, C. Ufrecht, F. Di Pumpo, S. Kleinert, S. Abend et al., Sci. Adv. 5, 891 (2019).
309C. Ufrecht, F. Di Pumpo, A. Friedrich, A. Roura, C. Schubert, D. Schlippert et al., Phys. Rev. Res. 2, 043240 (2020).
310A. Roura, C. Schubert, D. Schlippert, and E. M. Rasel, Phys. Rev. D 104, 084001 (2021).
311L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng et al., Phys. Rev. Lett. 115, 013004 (2015).
312L. Zhou, C. He, S.-T. Yan, X. Chen, D.-F. Gao, W.-T. Duan et al., Phys. Rev. A 104, 022822 (2021).
313L. Zhou, S.-T. Yan, Y.-H. Ji, C. He, J.-J. Jiang, Z. Hou et al., Front. Phys. 10, 1274 (2022).
314AION Core Team collaboration, K. Bongs et al., see https://www.hep.ph.ic.ac.uk/AION-Project/ for “An Atom Interferometer Observatory and Network (AION) for the Exploration of Ultra-Light Dark Matter and Mid-Frequency Gravitational Waves.”.
315AION collaboration, “Centralised design and production of the ultra-high vacuum and laser-stabilisation systems for the AION Ultra-Cold Strontium Laboratories,” arXiv:2305.20060 2023.
316K. DeRose, T. Deshpande, Y. Wang, and T. Kovachy, Opt. Lett. 48, 3893 (2023).
317D. L. Butts, K. Kotru, J. M. Kinast, A. M. Radojevic, B. P. Timmons, and R. E. Stoner, J. Opt. Soc. Am. B 30, 922 (2013).
318A. Dunning, R. Gregory, J. Bateman, N. Cooper, M. Himsworth, J. A. Jones et al., Phys. Rev. A 90, 033608 (2014).
319J. Saywell, M. Carey, M. Belal, I. Kuprov, and T. Freegarde, J. Phys. B 53, 085006 (2020).
320M. H. Goerz, M. A. Kasevich, and V. S. Malinovsky, Atoms 11, 36 (2023).
321Z. Chen, G. Louie, Y. Wang, T. Deshpande, and T. Kovachy, Phys. Rev. A 107, 063302 (2023).
322J. Saywell, M. Carey, P. Light, S. Szigeti, A. Milne, K. Gill et al., “Enhancing the sensitivity of atom-interferometric inertial sensors in dynamic environments using robust control,” arXiv:2303.03683 2023.
323G. Louie, Z. Chen, T. Deshpande, and T. Kovachy, New J. Phys. 25, 083017 (2023).
324A. Bertoldi, P. Bouyer, and B. Canuel, “Quantum sensors with matter-waves for GW observation,” in Handbook of Gravitational Wave Astronomy, edited by C. Bambi, S. Katsanevas, and K. D. Kokkotas (Springer Singapore, Singapore, 2020), pp. 1–43.
325D. O. Sabulsky, J. Junca, G. Lefevre, X. Zou, A. Bertoldi, B. Battelier et al., Sci. Rep. 10, 3268 (2020).
326B. Canuel, X. Zou, D. O. Sabulsky, J. Junca, A. Bertoldi, Q. Beaufils et al., “A gravity antenna based on quantum technologies: MIGA,” arXiv:2204.12137 2022.
327G. Stephane, W. Georges, G. Yves, and S. Y. Joseph, Interdisciplinary And International Deep Underground Science, Engineering And Technology Laboratories, All Days of ISRM SINOROCK, 172 (2009).
328S. Rosat, J. Hinderer, J.-P. Boy, F. Littel, J.-D. Bernard, D. Boyer et al., J. Geodyn 119, 1 (2018).
329S. Henry, E. Borgo, C. Danquigny, B. Abi, K. Coulie, G. Micolau et al., E3S Web Conf. 12, 02003 (2016).
330J. Junca, A. Bertoldi, D. Sabulsky, G. Lefevre, X. Zou, J.-B. Decitre et al., Phys. Rev. D 99, 104026 (2019).
331D. O. Sabulsky, X. Zou, J. Junca, A. Bertoldi, M. Prevedelli, Q. Beaufils et al., E3S Web Conf. 357, 05001 (2022).
335D. Reitze, R. X. Adhikari, S. Ballmer, B. Barish, L. Barsotti, G. Billingsley et al., Bull. Am. Astron. Soc 51, 35 (2019).
336H. Ahlers, H. Muntinga, € A. Wenzlawski, M. Krutzik, G. Tackmann, S. Abend et al., Phys. Rev. Lett. 116, 173601 (2016).
337S. Abend, M. Gebbe, M. Gersemann, H. Ahlers, H. Muntinga, € E. Giese et al., Phys. Rev. Lett. 117, 203003 (2016).
338J. M. Hogan and M. A. Kasevich, Phys. Rev. A 94, 033632 (2016).
339E. Peik, M. Ben Dahan, I. Bouchoule, Y. Castin, and C. Salomon, Phys. Rev. A 55, 2989 (1997).
340M. Cadoret, E. de Mirandes, P. Clade, S. Guellati-Khelifa, C. Schwob, F. Nez et al., Phys. Rev. Lett. 101, 230801 (2008).
341H. Muller, € S-w Chiow, Q. Long, S. Herrmann, and S. Chu, Phys. Rev. Lett. 100, 180405 (2008).
342M. Jaffe, V. Xu, P. Haslinger, H. Muller, € and P. Hamilton, Phys. Rev. Lett. 121, 040402 (2018).
343H. Muller, € S-w Chiow, S. Herrmann, and S. Chu, Phys. Rev. Lett. 102, 240403 (2009).
344Z. Pagel, W. Zhong, R. H. Parker, C. T. Olund, N. Y. Yao, and H. Muller, € Phys. Rev. A 102, 053312 (2020).
345T. Kovachy, S.-W. Chiow, and M. A. Kasevich, Phys. Rev. A 86, 011606 (2012).
346H. Muller, € S.-W. Chiow, and S. Chu, Phys. Rev. A 77, 023609 (2008).
347T. Leveque, A. Gauguet, F. Michaud, F. Pereira Dos Santos, and A. Landragin, Phys. Rev. Lett. 103, 080405 (2009).
348S.-W. Chiow, T. Kovachy, H.-C. Chien, and M. A. Kasevich, Phys. Rev. Lett 107, 130403 (2011).
349G. D. McDonald, C. C. N. Kuhn, S. Bennetts, J. E. Debs, K. S. Hardman, M. Johnsson et al., Phys. Rev. A 88, 053620 (2013).
350D. O. Sabulsky, J. Junca, X. Zou, A. Bertoldi, M. Prevedelli, Q. Beaufils et al., “Multi-photon atom interferometry via cavity-enhanced Bragg diffraction,” arXiv:2201.11693 2022.
351M. Dovale-Alvarez, D. D. Brown, A. W. Jones, C. M. Mow-Lowry, H. Miao, and A. Freise, Phys. Rev. A 96, 053820 (2017).
352B. Fang, N. Mielec, D. Savoie, M. Altorio, A. Landragin, and R. Geiger, New J. Phys. 20, 023020 (2018).
353A. Bertoldi, C.-H. Feng, D. Naik, B. Canuel, P. Bouyer, and M. Prevedelli, Phys. Rev. Lett. 127, 013202 (2021).
354R. Nourshargh, S. Lellouch, S. Hedges, M. Langlois, K. Bongs, and M. Holynski, Commun. Phys. 4, 257 (2021).
355R. Nourshargh, S. Hedges, M. Langlois, K. Bongs, and M. Holynski, Opt. Express 30, 30001 (2022).
356Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, Nature 450, 272 (2007).
357K. C. Cox, G. P. Greve, J. M. Weiner, and J. K. Thompson, Phys. Rev. Lett. 116, 093602 (2016).
358O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A. Kasevich, Nature 529, 505 (2016).
359G. M. Harry, Classical Quantum Gravity 27, 084006 (2010).
360F. Acernese, M. Agathos, K. Agatsuma, D. Aisa, N. Allemandou, A. Allocca et al., Classical Quantum Gravity 32, 024001 (2015).
361N. Mielec, R. Sapam, C. Poulain, A. Landragin, A. Bertoldi, P. Bouyer et al., Opt. Express 28, 39112 (2020).
362J. A. Arnaud, Appl. Opt. 8, 189 (1969).
363I. Dutta, D. Savoie, B. Fang, B. Venon, C. Garrido Alzar, R. Geiger et al., Phys. Rev. Lett. 116, 183003 (2016).
364J. Heise, “The Sanford Underground Research Facility,” in Snowmass (2021).
365J. Joutsenvaara, M. Holma, O. Kotavaara, and H. J. Puputti, J. Phys. 2156, 012166 (2021).
366M. G. Beker, J. Brand, E. Hennes, and D. S. Rabeling, J. Phys. 363, 012004 (2012).
367ETSEC collaboration, T. Bulik, et al., Report to the 23rd LSC Scientific Committee Meeting, 2018.
368J. Perez-Perez, J. C. Amare, I. C. Bandac, A. Bayo, S. Borjabad-Sanchez, J. M. Calvo-Mozota et al., Universe 8, 112 (2022).
369P. R. Saulson, Phys. Rev. D 30, 732 (1984).
370S. Bonnefoy-Claudet, F. Cotton, and P.-Y. Bard, Earth-Sci. Rev. 79, 205 (2006).
371D. Coward, J. Turner, D. Blair, and K. Galybin, Rev. Sci. Instrum. 76, 044501 (2005).
372I. Fiori, F. Paoletti, M. C. Tringali, K. Janssens, C. Karathanasis, A. Menendez-Vazquez et al., Galaxies 8, 82 (2020).
373A. Ekimov and J. M. Sabatier, J. Acoust. Soc. Am. 120, 762 (2006).
374J. Carlton and C. McCabe, “From RATs to riches: mitigating anthropogenic and synanthropic noise in atom interferometer searches for ultra-light dark matter,” 2023 arXiv:2308.10731.
375M. Coughlin, N. Mukund, J. Harms, J. Driggers, R. Adhikari, and S. Mitra, Classical Quantum Gravity 33, 244001 (2016).
377E. Stutzmann, M. Schimmel, G. Patau, and A. Maggi, Geochem., Geophys., Geosyst. 10(1), Q11004 (2009).
378T. Akutsu, M. Ando, K. Arai, Y. Arai, S. Araki, A. Araya et al., Prog. Theor. Exp. Phys. 2021, 05A101.
379R. Bajpai, T. Tomaru, T. Suzuki, K. Yamamoto, T. Ushiba, and T. Honda, Phys. Rev. D 107, 042001 (2023).
380E. Bonilla, B. Shapiro, B. Lantz, O. D. Aguiar, and M. Constancio, Phys. Rev. D 104, 122005 (2021).
381R. X. Adhikari, K. Arai, A. F. Brooks, C. Wipf, O. Aguiar, P. Altin et al., Classical Quantum Gravity 37, 165003 (2020).
382K. Somiya, see https://www-kam2.icrr.u-tokyo.ac.jp/event/3/contributions/401/ for “Newtonian Noise From the Underground Water.”
383A. Palermo, S. Kr€odel, A. Marzani, and C. Daraio, Sci. Rep. 6, 39356 (2016).
384N. Wiener, N. Wiener, C. Mathematician, N. Wiener, N. Wiener, and C. Mathematicien, Extrapolation, Interpolation, and Smoothing of Stationary Time Series: With Engineering Applications (MIT Press, Cambridge, MA, 1949), Vol. 113.
385G. Cella, “Off-line subtraction of seismic Newtonian noise,” in Recent Developments in General Relativity (Springer, 2000), pp. 495–503.
386J. C. Driggers, J. Harms, and R. X. Adhikari, Phys. Rev. D 86, 102001 (2012).
387M. W. Coughlin, J. Harms, J. Driggers, D. J. McManus, N. Mukund, M. P. Ross et al., Phys. Rev. Lett. 121, 221104 (2018).
388F. Badaracco and J. Harms, Classical Quantum Gravity 36, 145006 (2019).
389F. Badaracco, J. Harms, A. Bertolini, T. Bulik, I. Fiori, B. Idzkowski et al., Classical Quantum Gravity 37, 195016 (2020).
390J. Harms and K. Venkateswara, Classical Quantum Gravity 33, 234001 (2016).
391S. Koley, M. Bader, J. van den Brand, X. Campman, H. J. Bulten, F. Linde et al., Classical Quantum Gravity 39, 025008 (2022).
392M. Bader, S. Koley, J. van den Brand, X. Campman, H. J. Bulten, F. Linde et al., Classical Quantum Gravity 39, 025009 (2022).
393M. Di Giovanni, C. Giunchi, G. Saccorotti, A. Berbellini, L. Boschi, M. Olivieri et al., Seismol. Res. Lett. 92, 352 (2020).
394F. Ardhuin, L. Gualtieri, and E. Stutzmann, Geophys. Res. Lett. 42, 765, https://doi.org/10.1002/2014GL062782 (2015).
A. Bertoldi, S. Gaffet, M. Prevedelli, and D. A. Smith, Forecasting Ocean Wave-Induced Seismic Noise (The Research Square Team Platform LLC, 2023).
C. Schubert, S. Abend, M. Gersemann, M. Gebbe, D. Schlippert, P. Berg et al., Sci. Rep. 11, 16121 (2021).
C. M. Will, Living Rev. Relativ. 17, 4 (2014).
A. Einstein, Ann. Phys. 340, 898 (1911).
A. Einstein, “Die Feldgleichungen der Gravitation,” in Sitzungsberichte der K€oniglich Preußischen Akademie der Wissenschaften (Royal Prussian Academy of Science, 1915), pp. 844–847.
E. Di Casola, S. Liberati, and S. Sonego, Am. J. Phys. 83, 39 (2015).
M. A. Hohensee, N. Leefer, D. Budker, C. Harabati, V. A. Dzuba, and V. V. Flambaum, Phys. Rev. Lett. 111, 050401 (2013).
P. Delva, N. Puchades, E. Sch€onemann, F. Dilssner, C. Courde, S. Bertone et al., Phys. Rev. Lett. 121, 231101 (2018).
R. Lange, N. Huntemann, J. M. Rahm, C. Sanner, H. Shao, B. Lipphardt et al., Phys. Rev. Lett. 126, 011102 (2021).
S. M. Brewer, J.-S. Chen, A. M. Hankin, E. R. Clements, C. W. Chou, D. J. Wineland et al., Phys. Rev. Lett. 123, 033201 (2019).
W. F. McGrew, X. Zhang, H. Leopardi, R. J. Fasano, D. Nicolodi, K. Beloy et al., Optica 6, 448 (2019).
M. A. Kasevich, E. Riis, S. Chu, and R. G. DeVoe, Phys. Rev. Lett. 63, 612 (1989).
V. I. Yudin, A. V. Taichenachev, C. W. Oates, Z. W. Barber, N. D. Lemke, A. D. Ludlow et al., Phys. Rev. A 82, 011804 (2010).
I. Lizuain, J. G. Muga, and J. Eschner, Phys. Rev. A 76, 033808 (2007).
E. A. Alden, K. R. Moore, and A. E. Leanhardt, Phys. Rev. A 90, 012523 (2014).
E. M. Rasel, M. K. Oberthaler, H. Batelaan, J. Schmiedmayer, and A. Zeilinger, Phys. Rev. Lett. 75, 2633 (1995).
K. Zhang, M.-K. Zhou, Y. Cheng, L.-L. Chen, Q. Luo, W.-J. Xu et al., Chin. Phys. Lett. 37, 043701 (2020).
M. Zych, F. Costa, I. Pikovski, and C. Brukner, Nat. Commun. 2, 505 (2011).
M. Sonnleitner and S. M. Barnett, Phys. Rev. A 98, 042106 (2018).
P. K. Schwartz and D. Giulini, Phys. Rev. A 100, 052116 (2019).
S. Sinha and J. Samuel, Classical Quantum Gravity 28, 145018 (2011).
A. Roura, “Atom interferometer as a freely falling clock for time-dilation measurements,” arXiv:2402.11065.
J. O. Liard, C. A. Sanchez, B. M. Wood, A. D. Inglis, and R. J. Silliker, Metrologia 51, S32 (2014).
S. Merlet, A. Kopaev, M. Diament, G. Geneves, A. Landragin, and F. Pereira Dos Santos, Metrologia 45, 265 (2008).
J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, Phys. Rev. A 65, 033608 (2002).
Q.-Q. Hu, C. Freier, B. Leykauf, V. Schkolnik, J. Yang, M. Krutzik et al., Phys. Rev. A 96, 033414 (2017).
T. Farah, C. Guerlin, A. Landragin, P. Bouyer, S. Gaffet, F. Pereira Dos Santos et al., Gyroscopy Navig. 5, 266 (2014).
M. Schilling and L. Timmen, “Traceability of the Hannover FG5X-220 to the SI units,” in International Symposium on Earth and Environmental Sciences for Future Generations (Springer, Cham, 2016), Vol. 147, pp. 69–75.
V. Palinkas, H. Wziontek, M. Vaľko, P. Kren, and R. Falk, J. Geod. 95, 21 (2021).
P.-A. Olsson, K. Breili, V. Ophaug, H. Steffen, M. Bilker-Koivula, E. Nielsen et al., Geophys. J. Int. 217, 1141 (2019).
M. Bilker-Koivula, J. M€akinen, H. Ruotsalainen, J. N€ar€anen, and T. Saari, J. Geod. 95, 24 (2021).
J. M. Goodkind, Rev. Sci. Instrum. 70, 4131 (1999).
D. Carbone, F. Cannavo, F. Greco, R. Reineman, and R. J. Warburton, J. Geophys. Res. 124, 4035, https://doi.org/10.1029/2018JB017204 (2019).
W. Hu, M. M. Lawson, D. Budker, N. L. Figueroa, D. F. J. Kimball, A. P. Mills, Jr., et al., Eur. Phys. J. D 74, 115 (2020).
V. K. Milyukov and M. P. Vinogradov, Pure Appl. Geophys. 180, 735 (2023).
J. Rekier, B. F. Chao, J. Chen, V. Dehant, S. Rosat, and P. Zhu, Surv. Geophys. 43, 149 (2022).
M. Carlesso, A. Bassi, M. Paternostro, and H. Ulbricht, New J. Phys. 21, 093052 (2019).
A. Bassi, A. Großardt, and H. Ulbricht, Classical Quantum Gravity 34, 193002 (2017).
S. Eibenberger, S. Gerlich, M. Arndt, M. Mayor, and J. Tuxen, € Phys. Chem. Chem. Phys. 15, 14696 (2013).
P. Haslinger, N. D€orre, P. Geyer, J. Rodewald, S. Nimmrichter, and M. Arndt, Nat. Phys. 9, 144 (2013).
Y. Y. Fein, P. Geyer, F. Kiałka, S. Gerlich, and M. Arndt, Phys. Rev. Res. 1, 033158 (2019).
H. Talbot, London, Edinburgh Dublin Philos. Mag. J. Sci 9, 401 (2009).
R. Kaltenbaek, M. Arndt, M. Aspelmeyer, P. F. Barker, A. Bassi, J. Bateman et al., Quantum Sci. Technol. 8, 014006 (2023).
F. Kiałka, Y. Y. Fein, S. Pedalino, S. Gerlich, and M. Arndt, AVS Quantum Sci. 4, 020502 (2022).
P. Asenbaum, S. Kuhn, S. Nimmrichter, U. Sezer, and M. Arndt, Nat. Commun. 4, 2743 (2013).
U. Delic, M. Reisenbauer, K. Dare, D. Grass, V. Vuletic, N. Kiesel et al., Science 367, 892 (2020).