[en] A system was recently implemented in the Virgo detector to cancel noise in its data produced by seismic waves directly coupling with the suspended test masses through gravitational interaction. The data from seismometers are being filtered to produce a coherent estimate of the associated gravitational noise also known as Newtonian noise. The first implementation of the system uses a time-invariant (static) Wiener filter, which is the optimal filter for Newtonian-noise cancellation assuming that the noise is stationary. However, time variations in the form of transients and slow changes in correlations between sensors are possible and while time-variant filters are expected to cope with these variations better than a static Wiener filter, the question is what the limitations are of time-variant noise cancellation. In this study, we present a framework to study the performance limitations of time-variant noise cancellation filters and carry out a proof of concept with adaptive filters on seismic data at the Virgo site. We demonstrate that the adaptive filters, at least those with superior architecture, indeed significantly outperform the static Wiener filter with the residual noise remaining above the statistical error bound.
Disciplines :
Physics
Author, co-author :
Koley, Soumen ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Ondes gravitationnelles ; Gran Sasso Science Institute (GSSI), L'Aquila, Italy ; INFN, Laboratori Nazionali Del Gran Sasso, Assergi, Italy
Harms, Jan; Gran Sasso Science Institute (GSSI), L'Aquila, Italy ; INFN, Laboratori Nazionali Del Gran Sasso, Assergi, Italy
Allocca, Annalisa; Università di Napoli Federico II, Napoli, Italy ; INFN, Sezione di Napoli, Napoli, Italy
Calloni, Enrico; Università di Napoli Federico II, Napoli, Italy ; INFN, Sezione di Napoli, Napoli, Italy
De Rosa, Rosario; Università di Napoli Federico II, Napoli, Italy ; INFN, Sezione di Napoli, Napoli, Italy
Errico, Luciano; Università di Napoli Federico II, Napoli, Italy ; INFN, Sezione di Napoli, Napoli, Italy
Esposito, Marina; Università di Napoli Federico II, Napoli, Italy ; INFN, Sezione di Napoli, Napoli, Italy
Badaracco, Francesca; INFN, Sezione di Genova, Genova, Italy
Rei, Luca; INFN, Sezione di Genova, Genova, Italy
Bertolini, Alessandro; INFN, Sezione di Napoli, Napoli, Italy
Cieslar, Marek; Astronomical Observatory, University of Warsaw, Warsaw, Poland ; Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw, Poland
Pietrzak, Mateusz; Astronomical Observatory, University of Warsaw, Warsaw, Poland ; Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw, Poland
Suchenek, Mariusz; Astronomical Observatory, University of Warsaw, Warsaw, Poland ; Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw, Poland
Fiori, Irene; European Gravitational Observatory (EGO), Pisa, Italy
Paoli, Andrea; European Gravitational Observatory (EGO), Pisa, Italy
Tringali, Maria Concetta; European Gravitational Observatory (EGO), Pisa, Italy
Ruggi, Paolo; European Gravitational Observatory (EGO), Pisa, Italy
Istituto Nazionale di Fisica Nucleare Sezione di Padova CNRS - Centre National de la Recherche Scientifique NWO - Nederlandse Organisatie voor Wetenschappelijk Onderzoek AEI - Agencia Estatal de Investigación Generalitat Valenciana Generalitat de Catalunya NCN - Narodowe Centrum Nauki ERDF - European Regional Development Fund OTKA - Hungarian Scientific Research Fund F.R.S.-FNRS - Fonds de la Recherche Scientifique FWO - Fonds Wetenschappelijk Onderzoek Vlaanderen EC - European Commission NSF - National Science Foundation STFC - Science and Technology Facilities Council MIUR - Ministero dell'Istruzione, dell'Università e della Ricerca
Funding text :
The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Netherlands Organization for Scientific Research (NWO), for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Spanish Agencia Estatal de Investigaci\u00F3n, the Consellera d\u2019Innovaci\u00F3, Universitats, Ci\u00E8ncia i Societat Digital de la Generalitat Valenciana and the CERCA Programme Generalitat de Catalunya, Spain, the National Science Centre of Poland and the European Union-European Regional Development Fund; Foundation for Polish Science (FNP), the Hungarian Scientific Research Fund (OTKA), the French Lyon Institute of Origins (LIO), the Belgian Fonds de la Recherche Scientifique (FRS-FNRS), Actions de Recherche Concert\u00E9es (ARC) and Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO), Belgium, the European Commission. The authors gratefully acknowledge the support of the NSF, STFC, INFN, CNRS, and Nikhef for provision of computational resources. S.\u2009K. acknowledges the support through a collaboration agreement between Gran Sasso Science Institute and Nikhef and from the European Gravitational Observatory through a collaboration convention on Advanced Virgo . The authors also gratefully acknowledge the support of the Italian Ministry of Education, University and Research within the PRIN 2017 Research Program Framework, No. 2017SYRTCN.
B. P. Abbott, R. Abbott, T. Abbott, M. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. Adhikari, Phys. Rev. Lett. 116, 061102 (2016). PRLTAO 0031-9007 10.1103/PhysRevLett.116.061102
F. Acernese, T. Adams, M. Agathos, K. Agatsuma, A. Allocca, P. Astone, G. Ballardin, F. Barone, M. Barsuglia, A. Basti, J. Phys. Conf. Ser. 610, 012014 (2015). JPCSDZ 1742-6588 10.1088/1742-6596/610/1/012014
J. Aasi, B. Abbott, R. Abbott, T. Abbott, M. Abernathy, K. Ackley, C. Adams, T. Adams, P. Addesso, R. Adhikari, Classical Quantum Gravity 32, 074001 (2015). CQGRDG 0264-9381 10.1088/0264-9381/32/7/074001
B. Abbott, R. Abbott, T. Abbott, S. Abraham, F. Acernese, K. Ackley, C. Adams, R. Adhikari, V. Adya, C. Affeldt, Phys. Rev. X 9, 031040 (2019). PRXHAE 2160-3308 10.1103/PhysRevX.9.031040
R. Abbott, T. Abbott, S. Abraham, F. Acernese, K. Ackley, A. Adams, C. Adams, R. Adhikari, V. Adya, C. Affeldt, Phys. Rev. X 11, 021053 (2021). PRXHAE 2160-3308 10.1103/PhysRevX.11.021053
R. Abbott, T. Abbott, F. Acernese, K. Ackley, C. Adams, N. Adhikari, R. Adhikari, V. Adya, C. Affeldt, D. Agarwal, Phys. Rev. X 13, 011048 (2023). PRXHAE 2160-3308 10.1103/PhysRevX.13.011048
R. Abbott, T. Abbott, F. Acernese, K. Ackley, C. Adams, N. Adhikari, R. Adhikari, V. Adya, C. Affeldt, D. Agarwal, Phys. Rev. X 13, 041039 (2023). PRXHAE 2160-3308 10.1103/PhysRevX.13.041039
F. Acernese, T. Adams, K. Agatsuma, L. Aiello, A. Allocca, A. Amato, S. Antier, N. Arnaud, S. Ascenzi, P. Astone, J. Phys. Conf. Ser. 1342, 012010 (2020). JPCSDZ 1742-6588 10.1088/1742-6596/1342/1/012010
V. Sequino, Phys. Scr. 96, 104014 (2021). PHSTBO 0031-8949 10.1088/1402-4896/ac0d30
G. Hammond, A. Cumming, J. Hough, R. Kumar, K. Tokmakov, S. Reid, and S. Rowan, Classical Quantum Gravity 29, 124009 (2012). CQGRDG 0264-9381 10.1088/0264-9381/29/12/124009
R. Flaminio, in Ground-Based and Airborne Telescopes VIII (SPIE, Washington, 2020), Vol. 11445, pp. 205-214.
J. Harms, Living Rev. Relativity 22, 6 (2019). 1433-8351 10.1007/s41114-019-0022-2
M. Beccaria, M. Bernardini, S. Braccini, C. Bradaschia, A. Bozzi, C. Casciano, G. Cella, A. Ciampa, E. Cuoco, G. Curci, Classical Quantum Gravity 15, 3339 (1998). CQGRDG 0264-9381 10.1088/0264-9381/15/11/004
S. A. Hughes and K. S. Thorne, Phys. Rev. D 58, 122002 (1998). PRVDAQ 0556-2821 10.1103/PhysRevD.58.122002
D. Fiorucci, J. Harms, M. Barsuglia, I. Fiori, and F. Paoletti, Phys. Rev. D 97, 062003 (2018). PRVDAQ 2470-0010 10.1103/PhysRevD.97.062003
D. Brundu, M. Cadoni, M. Oi, P. Olla, and A. P. Sanna, Phys. Rev. D 106, 064040 (2022). PRVDAQ 2470-0010 10.1103/PhysRevD.106.064040
M. Bader, Ph.D. thesis-research and graduation internal, Vrije Universiteit Amsterdam, 2021.
T. Andric and J. Harms, J. Geophys. Res. 125, e2020JB020401 (2020). JGREA2 0148-0227 10.1029/2020JB020401
J. Harms, L. Naticchioni, E. Calloni, R. De Rosa, F. Ricci, and D. D'Urso, Eur. Phys. J. Plus 137, 687 (2022). EPJPA3 2190-5444 10.1140/epjp/s13360-022-02851-z
S. Koley, H. J. Bulten, J. v. d. Brand, M. Bader, X. Campman, and M. Beker, in SEG Technical Program Expanded Abstracts 2017 (Society of Exploration Geophysicists, Texas, 2017), pp. 2946-2950.
M. C. Tringali, T. Bulik, J. Harms, I. Fiori, F. Paoletti, N. Singh, B. Idzkowski, A. Kutynia, K. Nikliborc, M. Suchiński, Classical Quantum Gravity 37, 025005 (2020). CQGRDG 0264-9381 10.1088/1361-6382/ab5c43
A. Singha, S. Hild, and J. Harms, Classical Quantum Gravity 37, 105007 (2020). CQGRDG 0264-9381 10.1088/1361-6382/ab81cb
A. Singha, S. Hild, J. Harms, M. C. Tringali, I. Fiori, F. Paoletti, T. Bulik, B. Idzkowski, A. Bertolini, E. Calloni, Classical Quantum Gravity 38, 245007 (2021). CQGRDG 0264-9381 10.1088/1361-6382/ac348a
G. Cella, in Recent Developments in General Relativity (Springer, New York, 2000), pp. 495-503.
S. Treitel, Geophysics 35, 785 (1970). GPYSA7 0016-8033 10.1190/1.1440130
J. C. Driggers, J. Harms, and R. X. Adhikari, Phys. Rev. D 86, 102001 (2012). PRVDAQ 1550-7998 10.1103/PhysRevD.86.102001
M. Coughlin, N. Mukund, J. Harms, J. Driggers, R. Adhikari, and S. Mitra, Classical Quantum Gravity 33, 244001 (2016). CQGRDG 0264-9381 10.1088/0264-9381/33/24/244001
M. W. Coughlin, J. Harms, J. Driggers, D. J. McManus, N. Mukund, M. P. Ross, B. J. J. Slagmolen, and K. Venkateswara, Phys. Rev. Lett. 121, 221104 (2018), PRLTAO 0031-9007 10.1103/PhysRevLett.121.221104
F. Badaracco, J. Harms, A. Bertolini, T. Bulik, I. Fiori, B. Idzkowski, A. Kutynia, K. Nikliborc, F. Paoletti, A. Paoli, Classical Quantum Gravity 37, 195016 (2020). CQGRDG 0264-9381 10.1088/1361-6382/abab64
S. Koley, J. Harms, A. Allocca, F. Badaracco, A. Bertolini, T. Bulik, E. Calloni, M. Cieslar, R. De Rosa, L. Errico, Eur. Phys. J. Plus 139, 48 (2024). EPJPA3 2190-5444 10.1140/epjp/s13360-023-04834-0
S. S. Haykin, Adaptive Filter Theory (Pearson Education India, New Delhi, 2002).
J. Benesty, M. M. Sondhi, Y. Huang, Springer Handbook of Speech Processing (Springer, New York, 2008), Vol. 1.
J. C. Driggers, M. Evans, K. Pepper, and R. Adhikari, Rev. Sci. Instrum. 83 (2012). RSINAK 0034-6748 10.1063/1.3675891
D. T. Slock, IEEE Trans. Signal Process. 41, 2811 (1993). ITPRED 1053-587X 10.1109/78.236504
E. Eleftheriou and D. Falconer, IEEE Trans. Acoust. Speech Signal Process. 34, 1097 (1986). IETABA 0096-3518 10.1109/TASSP.1986.1164950
M. D'Andrea, R. De Rosa, I. Fiori, F. Paoletti, A. Paoli, R. Passaquieti, P. Ruggi, D. Soldani, and M. C. Tringali, Technical Report VIR-0181C-21, European Gravitational Observatory, 2021, https://tds.virgo-gw.eu/content=3&r=18353.
J. Harms and K. Venkateswara, Classical Quantum Gravity 33, 234001 (2016). CQGRDG 0264-9381 10.1088/0264-9381/33/23/234001
E. Calloni, M. De Laurentis, R. De Rosa, F. Garufi, L. Rosa, L. Di Fiore, G. Esposito, C. Rovelli, P. Ruggi, and F. Tafuri, Phys. Rev. D 90, 022002 (2014). PRVDAQ 1550-7998 10.1103/PhysRevD.90.022002
A. Allocca, S. Avino, E. Calloni, S. Caprara, M. Carpinelli, D. D'urso, M. De Laurentis, R. De Rosa, L. Errico, G. Gagliardi, Eur. Phys. J. Plus 136, 1069 (2021). EPJPA3 2190-5444 10.1140/epjp/s13360-021-01993-w
J. Harms, E. L. Bonilla, M. W. Coughlin, J. Driggers, S. E. Dwyer, D. J. McManus, M. P. Ross, B. J. J. Slagmolen, and K. Venkateswara, Phys. Rev. D 101, 102002 (2020). PRVDAQ 2470-0010 10.1103/PhysRevD.101.102002
C. Cutler and J. Harms, Phys. Rev. D 73, 042001 (2006). PRVDAQ 1550-7998 10.1103/PhysRevD.73.042001
E. Payne, S. Hourihane, J. Golomb, R. Udall, D. Davis, and K. Chatziioannou, Phys. Rev. D 106, 104017 (2022). PRVDAQ 2470-0010 10.1103/PhysRevD.106.104017
B. Widrow, M. E. Hoff, in IRE WESCON Convention Record (IRE, New York, 1960), Vol. 4, pp. 96-104.
B. Widrow and S. D. Stearns, Adaptive Signal Processing (Englewood Cliffs, New Jersey, 1985), p. 52.
S. Makino, Y. Kaneda, and N. Koizumi, IEEE Trans. Speech Audio Process. 1, 101 (1993). IESPEJ 1063-6676 10.1109/89.221372
M. Rupp, IEEE Trans. Signal Process. 46, 771 (1998). ITPRED 1053-587X 10.1109/78.661344
R. Harris, D. Chabries, and F. Bishop, IEEE Trans. Acoust. Speech Signal Process. 34, 309 (1986). IETABA 0096-3518 10.1109/TASSP.1986.1164814
R. H. Kwong and E. W. Johnston, IEEE Trans. Signal Process. 40, 1633 (1992). ITPRED 1053-587X 10.1109/78.143435
V. J. Mathews and Z. Xie, IEEE Trans. Signal Process. 41, 2075 (1993). ITPRED 1053-587X 10.1109/78.218137
T. Aboulnasr and K. Mayyas, IEEE Trans. Signal Process. 45, 631 (1997). ITPRED 1053-587X 10.1109/78.558478
D. L. Duttweiler, IEEE Trans. Speech Audio Process. 8, 508 (2000). IESPEJ 1063-6676 10.1109/89.861368
J. Benesty and S. L. Gay, in 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing (IEEE, Piscataway, New Jersey, 2002), Vol. 2, pp. II-1881.
P. Loganathan, E. A. Habets, and P. A. Naylor, in 2010 IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, Piscataway, New Jersey, 2010), pp. 317-320.
D. Lee, M. Morf, and B. Friedlander, IEEE Trans. Acoust. Speech, Signal Process. 29, 627 (1981). 10.1109/TASSP.1981.1163587
B. Porat and T. Kailath, IEEE Trans. Acoust. Speech Signal Process. 31, 122 (1983). IETABA 0096-3518 10.1109/TASSP.1983.1164012
J. Cioffi and T. Kailath, IEEE Trans. Acoust. Speech Signal Process. 32, 304 (1984). IETABA 0096-3518 10.1109/TASSP.1984.1164334
D. T. Slock and T. Kailath, IEEE Trans. Acoust. Speech Signal Process. 37, 346 (1989). IETABA 0096-3518 10.1109/29.21703
M. A. Woodbury, Inverting Modified Matrices (Department of Statistics, Princeton University, Princeton, NJ, 1950).
B. Friedlander, Proc. IEEE 70, 829 (1982). IEEPAD 0018-9219 10.1109/PROC.1982.12407
L. Ljung, M. Morf, and D. Falconer, Int. J. Control 27, 1 (1978). IJCOAZ 0020-7179 10.1080/00207177808922343
D. Falconer and L. Ljung, IEEE Trans. Commun. 26, 1439 (1978). IECMBT 0090-6778 10.1109/TCOM.1978.1093988
G. Carayannis, D. Manolakis, and N. Kalouptsidis, IEEE Trans. Acoust. Speech Signal Process. 31, 1394 (1983). IETABA 0096-3518 10.1109/TASSP.1983.1164224
D. T. Slock and T. Kailath, in Numerical Linear Algebra, Digital Signal Processing and Parallel Algorithms (Springer, New York, 1991), pp. 605-615.
S. Ljung and L. Ljung, Automatica 21, 157 (1985). ATCAA9 0005-1098 10.1016/0005-1098(85)90110-4
S. Ardalan and S. Alexander, IEEE Trans. Acoust. Speech Signal Process. 35, 770 (1987). IETABA 0096-3518 10.1109/TASSP.1987.1165207
S. Koley, Adaptive nnc, https://github.com/soumenkoley/AdaptiveNNC.git (2024).
A. Benallal and A. Gilloire, in International Conference on Acoustics, Speech, and Signal Processing (IEEE, Piscataway, New Jersey, 1989), pp. 1031-1034.
J. Benesty, D. R. Morgan, and M. M. Sondhi, IEEE Trans. Speech Audio Process. 6, 156 (1998). IESPEJ 1063-6676 10.1109/89.661474
J. Benesty, T. Gänsler, Y. Huang, and M. Rupp, Adaptive Algorithms for MIMO Acoustic Echo Cancellation (Springer, New York, 2004).
D. R. Morgan, J. L. Hall, and J. Benesty, IEEE Trans. Speech Audio Process. 9, 686 (2001). IESPEJ 1063-6676 10.1109/89.943346
E. Eleftheriou and D. Falconer, Proceedings of the IEEE Globecom (Atlanta, CA, 1984), pp. 1558-1562.