Atom interferometer; Atom interferometry; Imperial College; International resources; Large-scales; Long base line; Memorandum of understanding; Strategic direction; Control and Systems Engineering; Atomic and Molecular Physics, and Optics; Condensed Matter Physics; Electrical and Electronic Engineering
Abstract :
[en] This summary of the second Terrestrial Very-Long-Baseline Atom Interferometry (TVLBAI) Workshop provides a comprehensive overview of our meeting held in London in April 2024 (Second Terrestrial Very-Long-Baseline Atom Interferometry Workshop, Imperial College, April 2024), building on the initial discussions during the inaugural workshop held at CERN in March 2023 (First Terrestrial Very-Long-Baseline Atom Interferometry Workshop, CERN, March 2023). Like the summary of the first workshop (Abend et al. in AVS Quantum Sci. 6:024701, 2024), this document records a critical milestone for the international atom interferometry community. It documents our concerted efforts to evaluate progress, address emerging challenges, and refine strategic directions for future large-scale atom interferometry projects. Our commitment to collaboration is manifested by the integration of diverse expertise and the coordination of international resources, all aimed at advancing the frontiers of atom interferometry physics and technology, as set out in a Memorandum of Understanding signed by over 50 institutions (Memorandum of Understanding for the Terrestrial Very Long Baseline Atom Interferometer Study).
Disciplines :
Physics
Author, co-author :
Abdalla, Adam; Fachbereich Physik, Institut für Angewandte Physik, Technische Universität Darmstadt, Darmstadt, Germany
Abe, Mahiro; Department of Physics, Stanford University, Stanford, United States
Abend, Sven; Institut für Quantenoptik, Leibniz Universität Hannover, Hannover, Germany
Abidi, Mouine; Institut für Quantenoptik, Leibniz Universität Hannover, Hannover, Germany
Aidelsburger, Monika; Max-Planck-Institut für Quantenoptik, Garching, Germany ; Fakultät für Physik, Ludwig-Maximilians-Universität, Munich, Germany ; Munich Center for Quantum Science and Technology (MCQST), Munich, Germany
Alibabaei, Ashkan; Institut für Quantenoptik, Leibniz Universität Hannover, Hannover, Germany
Allard, Baptiste; Laboratoire Collisions Agrégats Réactivité UMR5589, University of Toulouse III Paul Sabatier CNRS, Toulouse, France
Antoniadis, John; Foundation for Research and Technology-Hellas (FORTH), Heraklion, Greece
Augst, Nadja; Institute of Quantum Technologies, German Aerospace Center (DLR), Ulm, Germany
Balamatsias, Philippos; BEC and Matterwave Optics Group, Institute of Electronic Structure and Lasers, Foundation for Research and Technology - Hellas, Crete, Greece
Balaž, Antun; Institute of Physics Belgrade, University of Belgrade, Belgrade, Serbia ; Serbian Academy of Sciences and Arts, Belgrade, Serbia
Banks, Hannah; Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
Barcklay, Rachel L.; Department of Physics, Stanford University, Stanford, United States
Barone, Michele; Institute of Nuclear and Particle Physics, NCSR Demokritos, Athens, Greece
Barsanti, Michele; Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
Bason, Mark G.; RAL Space, Rutherford Appleton Laboratory, UKRI-STFC, Didcot, United Kingdom
Bassi, Angelo; Department of Physics, University of Trieste, Trieste, Italy ; Istituto Nazionale di Fisica Nucleare, Trieste Section, Trieste, Italy
Bayle, Jean-Baptiste; University of Glasgow, Glasgow, United Kingdom
Baynham, Charles F. A.; Physics Department, Imperial College London, London, United Kingdom
Beaufils, Quentin; LNE-SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Paris, France
Beldjoudi, Sélyan; Laboratoire Collisions Agrégats Réactivité UMR5589, University of Toulouse III Paul Sabatier CNRS, Toulouse, France
Belić, Aleksandar; Institute of Physics Belgrade, University of Belgrade, Belgrade, Serbia
Bennetts, Shayne; Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Amsterdam, Netherlands ; Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
Bernabeu, Jose; IFIC, Joint Centre CSIC-University of Valencia, Burjassot, Spain
Bertoldi, Andrea; Laboratoire Photonique, Numérique et Nanosciences (LP2N), Université de Bordeaux-IOGS-CNRS, Talence, France
Bigard, Clara; Laboratoire Collisions Agrégats Réactivité UMR5589, University of Toulouse III Paul Sabatier CNRS, Toulouse, France
Bigelow, N.P.; Department of Physics and Astronomy and Institute of Optics, University of Rochester, Rochester, United States
Blas, Diego; Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra (Barcelona), Spain ; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
Bobrick, Alexey; Physics Department, Technion – Israel Institute of Technology, Haifa, Israel
Boehringer, Samuel; Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Ulm, Germany
Bogojević, Aleksandar; Institute of Physics Belgrade, University of Belgrade, Belgrade, Serbia
Bongs, Kai; Institute of Quantum Technologies, German Aerospace Center (DLR), Ulm, Germany
Bortoletto, Daniela; Department of Physics, University of Oxford, Oxford, United Kingdom
Bouyer, Philippe; Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Amsterdam, Netherlands ; QuSoft, Amsterdam, Netherlands ; Eindhoven University of Technology, Eindhoven, Netherlands
Brand, Christian; Institute of Quantum Technologies, German Aerospace Center (DLR), Ulm, Germany
Buchmueller, Oliver; Physics Department, Imperial College London, London, United Kingdom ; Department of Physics, University of Oxford, Oxford, United Kingdom
Buica, Gabriela; Institute of Space Science - INFLPR Subsidiary, Magurele, Romania
Calmels, Léo; Laboratoire Collisions Agrégats Réactivité UMR5589, University of Toulouse III Paul Sabatier CNRS, Toulouse, France
Canizares, Priscilla; Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
Canuel, Benjamin; Laboratoire Photonique, Numérique et Nanosciences (LP2N), Université de Bordeaux-IOGS-CNRS, Talence, France
Caramete, Ana; Institute of Space Science - INFLPR Subsidiary, Magurele, Romania
Caramete, Laurentiu-Ioan; Institute of Space Science - INFLPR Subsidiary, Magurele, Romania
Carlesso, Matteo; Department of Physics, University of Trieste, Trieste, Italy ; Istituto Nazionale di Fisica Nucleare, Trieste Section, Trieste, Italy
Carlton, John; Physics Department, King’s College London, London, United Kingdom
Carman, Samuel P.; Department of Physics, Stanford University, Stanford, United States
Carroll, Andrew; Department of Physics, University of Liverpool, Merseyside, United Kingdom
Casariego, Mateo; Basque Center for Applied Mathematics (BCAM), Bilbao, Spain ; EHU Quantum Center, University of the Basque Country UPV/EHU, Bilbao, Spain
Chairetis, Minoas; BEC and Matterwave Optics Group, Institute of Electronic Structure and Lasers, Foundation for Research and Technology - Hellas, Crete, Greece
Charmandaris, Vassilis; Foundation for Research and Technology-Hellas (FORTH), Heraklion, Greece ; Department of Physics, University of Crete, Heraklion, Greece ; School of Sciences, European University Cyprus, Nicosia, Cyprus
Chauhan, Upasna; Cold Atoms Group, School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
Chen, Jiajun; Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
Chiofalo, Maria Luisa Maria Luisa Marilù; Department of Physics “Enrico Fermi”, University of Pisa, Pisa, Italy ; INFN-Pisa, Pisa, Italy
Ciampini, Donatella; Department of Physics “Enrico Fermi”, University of Pisa, Pisa, Italy
Cimbri, Alessia; Physics Department, Imperial College London, London, United Kingdom
Cladé, Pierre; Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-Université PSL, Collège de France, Paris, France
Coleman, Jonathon; Department of Physics, University of Liverpool, Merseyside, United Kingdom
Constantin, Florin Lucian; Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, Lille, France
Contaldi, Carlo R.; Physics Department, Imperial College London, London, United Kingdom
Corgier, Robin; LNE-SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Paris, France
Dash, Bineet; Department of Physics, University of Michigan, Ann Arbor, United States
Davies, G.J.; Physics Department, Imperial College London, London, United Kingdom
de Rham, Claudia; Physics Department, Imperial College London, London, United Kingdom
De Roeck, Albert; CERN, CH-1211 Geneva 23, Switzerland
Derr, Daniel; Fachbereich Physik, Institut für Angewandte Physik, Technische Universität Darmstadt, Darmstadt, Germany
Dey, Soumyodeep; Cold Atoms Group, School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
Di Pumpo, Fabio; Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Ulm, Germany
Djordjevic, Goran S.; Department of Physics, University of Nis, Nis, Serbia ; SEENET-MTP Centre, Nis, Serbia
Döbrich, Babette; Max-Planck-Institut für Physik, Garching, Germany
Dornan, Peter; Physics Department, Imperial College London, London, United Kingdom
Drougakis, Giannis; Institute of Electronic Structure and Laser, Foundation for Research and Technology – Hellas, Heraklion, Greece
Dunningham, Jacob; Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
Duspayev, Alisher; Department of Physics, University of Michigan, Ann Arbor, United States ; Department of Physics and Joint Quantum Institute, University of Maryland, College Park, United States
Eby, Joshua; The Oskar Klein Centre, Department of Physics, Stockholm University, Stockholm, Sweden
Efremov, Maxim; Institute of Quantum Technologies, German Aerospace Center (DLR), Ulm, Germany ; Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Ulm, Germany
Elertas, Gedminas; Department of Physics, University of Liverpool, Merseyside, United Kingdom
Ellis, John; Physics Department, King’s College London, London, United Kingdom
Entin, Nicholas; Department of Physics, Stanford University, Stanford, United States
Fairhurst, Stephen; Gravity Exploration Institute, School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
Fanì, Mattia; School of Physics and Astronomy, University of Minnesota, Minneapolis, United States
Fassi, Farida; Faculty of Science, Mohammed V University, Rabat, Morocco
Fayet, Pierre; Laboratoire de physique de l’ENS, Ecole Normale Supérieure-PSL, CNRS, Sorbonne Université, Université Paris Cité, Paris Cedex 05, France ; Ecole polytechnique, IPP, Palaiseau, France
Felea, Daniel; Institute of Space Science - INFLPR Subsidiary, Magurele, Romania
Feng, Jie; School of Science, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
Flack, Robert; Department of Physics & Astronomy, University College London, London, United Kingdom
Foot, Chris; Department of Physics, University of Oxford, Oxford, United Kingdom
Freegarde, Tim; School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
Fuchs, Elina; Institute of Theoretical Physics, Leibniz University Hannover, Hannover, Germany ; Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
Gaaloul, Naceur; Institut für Quantenoptik, Leibniz Universität Hannover, Hannover, Germany
Gao, Dongfeng; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
Gardner, Susan; Department of Physics and Astronomy, University of Kentucky, Lexington, United States
Garraway, Barry M.; Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
Garrido Alzar, Carlos L.; LNE-SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Paris, France
Gauguet, Alexandre; Laboratoire Collisions Agrégats Réactivité UMR5589, University of Toulouse III Paul Sabatier CNRS, Toulouse, France
Giese, Enno; Fachbereich Physik, Institut für Angewandte Physik, Technische Universität Darmstadt, Darmstadt, Germany
Gill, Patrick; National Physical Laboratory, Teddington, United Kingdom
Giudice, Gian F.; CERN, CH-1211 Geneva 23, Switzerland
Glasbrenner, Eric P.; Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Ulm, Germany
Glick, Jonah; Department of Physics and Astronomy and Center for Fundamental Physics, Northwestern University, Evanston, United States
Graham, Peter W.; Department of Physics, Stanford University, Stanford, United States
Griffin, Paul F.; SUPA and Department of Physics, University of Strathclyde, Glasgow, United Kingdom
Gué, Jordan; LNE-SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Paris, France ; Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra (Barcelona), Spain
Guellati-Khelifa, Saïda; Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-Université PSL, Collège de France, Paris, France ; National Conservatory of Arts and Crafts, Paris, France
Gupta, Subhadeep; Department of Physics, University of Washington, Seattle, United States
Gupta, Vishu; Institut für Quantenoptik, Leibniz Universität Hannover, Hannover, Germany
Hackermueller, Lucia; School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
Haehnelt, Martin; Kavli Institute for Cosmology and Institute of Astronomy, University of Cambridge, Cambridge, United Kingdom
Hammerer, Klemens; Institute of Theoretical Physics, Leibniz University Hannover, Hannover, Germany
Hanımeli, Ekim T.; ZARM Center of Applied Space Technology and Microgravity, Universität Bremen, Bremen, Germany
Harte, Tiffany; Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
Hartmann, Sabrina; Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Ulm, Germany
Hawkins, Leonie; Physics Department, Imperial College London, London, United Kingdom
Hees, Aurelien; LNE-SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Paris, France
Herbst, Alexander; Institut für Quantenoptik, Leibniz Universität Hannover, Hannover, Germany
Hird, Thomas M.; Department of Physics, University of Oxford, Oxford, United Kingdom ; Cold Atoms Group, School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
Hobson, Richard; Physics Department, Imperial College London, London, United Kingdom
Hogan, Jason; Department of Physics, Stanford University, Stanford, United States
Holst, Bodil; Department of Physics and Technology, University of Bergen, Bergen, Norway
Holynski, Michael; Cold Atoms Group, School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
Hosten, Onur; Institute of Science and Technology Austria, Klosterneuburg, Austria
Hsu, Chung Chuan; Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
Huang, Wayne Cheng-Wei; Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
Hughes, Kenneth M.; Department of Physics, University of Oxford, Oxford, United Kingdom
Hussain, Kamran; Harwell Campus, STFC Rutherford Appleton Laboratory, Didcot, United Kingdom ; Department of Physics, University of Liverpool, Merseyside, United Kingdom
Hütsi, Gert; Keemilise ja bioloogilise füüsika instituut, Tallinn, Estonia
Iovino, Antonio; Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy ; INFN, Sezione di Roma, Rome, Italy ; Gravitational Wave Science Center (GWSC), Université de Genève, Geneva, Switzerland
Isfan, Maria-Catalina; Institute of Space Science - INFLPR Subsidiary, Magurele, Romania ; Faculty of Physics, University of Bucharest, Magurele, Romania
Janson, Gregor; Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Ulm, Germany
Jeglič, Peter; Jožef Stefan Institute, Ljubljana, Slovenia
Jetzer, Philippe; Department of Physics, University of Zurich, Zurich, Switzerland
Jiang, Yijun; Department of Physics, Stanford University, Stanford, United States
Juzeliūnas, Gediminas; Institute of Theoretical Physics and Astronomy, Vilnius University, Vilnius, Lithuania
Kalliokoski, Matti; Helsinki Institute of Physics, University of Helsinki, Helsinki, Finland
Kehagias, Alex; Physics Division, School of Applied Mathematical and Physical Sciences, NTUA, Athens, Greece
Kilian, Eva; Department of Physics & Astronomy, University College London, London, United Kingdom
Klempt, Carsten; Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Satellitengeodäsie und Inertialsensorik, Hannover, Germany
Knight, Peter; Physics Department, Imperial College London, London, United Kingdom
Koley, Soumen ✱; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Ondes gravitationnelles
Konrad, Bernd; Institute of Quantum Technologies, German Aerospace Center (DLR), Ulm, Germany
Kovachy, Tim; Department of Physics and Astronomy and Center for Fundamental Physics, Northwestern University, Evanston, United States
Krutzik, Markus; Institut für Physik and IRIS, Humboldt-Universität zu Berlin, Berlin, Germany ; Ferdinand-Braun-Institut (FBH), Berlin, Germany
Kumar, Mukesh; School of Physics and Institute for Collider Particle Physics, University of the Witwatersrand, Wits, South Africa
Kumar, Pradeep; Experimental Condensed Matter Physics Group, Ultrafast Coherent Spectroscopy Laboratory, Indian Institute of Science Education and Research, Bhopal, India
Labiad, Hamza; RAL Space, Rutherford Appleton Laboratory, UKRI-STFC, Didcot, United Kingdom ; Department of Physics, University of Liverpool, Merseyside, United Kingdom
Lan, Shau-Yu; Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan ; Department of Physics, National Tsing Hua University, Hsinchu, Taiwan ; Center for Quantum Science and Engineering, National Taiwan University, Taipei, Taiwan
Landragin, Arnaud; LNE-SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Paris, France
Landsberg, Greg; Dept. of Physics, Brown University, Providence, United States
Langlois, Mehdi; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, United States
Lanigan, Bryony; Centre for Cold Matter, Blackett Laboratory, Imperial College, London, United Kingdom
Leone, Bruno; European Centre for Space Applications and Telecommunications (ECSAT), European Space Agency (ESA), Didcot, United Kingdom
Le Poncin-Lafitte, Christophe; LNE-SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Paris, France
Lellouch, Samuel; Cold Atoms Group, School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
Lewicki, Marek; Faculty of Physics, University of Warsaw, Warsaw, Poland
Lien, Yu-Hung; Cold Atoms Group, School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
Lombriser, Lucas; Département de Physique Théorique, Université de Genève, Genève 4, Switzerland
Asamar, Elias Lopez; Departamento de Física Teórica, Universidad Autónoma de Madrid, Madrid, Spain ; Instituto de Fisica Teorica UAM-CSIC, Madrid, Spain
Lopez-Gonzalez, J. Luis; Department of Mathematics and Physics, Autonomous University of Aguascalientes, Aguascalientes, Mexico
Lu, Chen; Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
Luciano, Giuseppe Gaetano; Department of Chemistry, Physics and Environmental and Soil Sciences, Escola Politecninca Superior, Universidad de Lleida, Lleida, Spain
Lundblad, Nathan; Department of Physics and Astronomy, Bates College, Lewiston, United States
de J. López Monjaraz, Cristian; Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Querétaro, Querétaro, Mexico
Lowe, Adam; Department of Physics, University of Oxford, Oxford, United Kingdom
Mackoit-Sinkevičienė, Mažena; Institute of Theoretical Physics and Astronomy, Vilnius University, Vilnius, Lithuania
Maggiore, Michele; Gravitational Wave Science Center (GWSC), Université de Genève, Geneva, Switzerland ; Département de Physique Théorique, Université de Genève, Genève 4, Switzerland
Majumdar, Anirban; Department of Physics, Indian Institute of Science Education and Research - Bhopal, Bhopal, India
Makris, Konstantinos; BEC and Matterwave Optics Group, Institute of Electronic Structure and Lasers, Foundation for Research and Technology - Hellas, Crete, Greece
Maleknejad, Azadeh; Physics Department, King’s College London, London, United Kingdom
Marchant, Anna L.; RAL Space, Rutherford Appleton Laboratory, UKRI-STFC, Didcot, United Kingdom
Mariotti, Agnese; Institute of Theoretical Physics, Leibniz University Hannover, Hannover, Germany
Markou, Christos; Institute of Nuclear and Particle Physics, NCSR Demokritos, Athens, Greece
Ni, Wei-Tou; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
Niehof, Christian; Fachbereich Physik, Institut für Angewandte Physik, Technische Universität Darmstadt, Darmstadt, Germany
Noller, Johannes; Department of Physics & Astronomy, University College London, London, United Kingdom
Odžak, Senad; Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
Oi, Daniel K. L.; SUPA and Department of Physics, University of Strathclyde, Glasgow, United Kingdom
Oikonomou, Andreas; BEC and Matterwave Optics Group, Institute of Electronic Structure and Lasers, Foundation for Research and Technology - Hellas, Crete, Greece
Omar, Yasser; Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal ; Physics of Information and Quantum Technologies Group, Centro de Física e Engenharia de Materiais Avançados (CeFEMA), Lisbon, Portugal ; PQI – Portuguese Quantum Institute, Lisbon, Portugal
Overstreet, Chris; Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, United States
Puthiya Veettil, Vishnupriya; BEC and Matterwave Optics Group, Institute of Electronic Structure and Lasers, Foundation for Research and Technology - Hellas, Crete, Greece
Pahl, Julia; Institut für Physik and IRIS, Humboldt-Universität zu Berlin, Berlin, Germany
Paling, Sean; Boulby Underground Laboratory, Boulby Mine, Saltburn-by-the-Sea, United Kingdom
Pan, Zhongyin; Harwell Campus, Technology, Science and Technology Facilities Council, Didcot, United Kingdom
Pappas, George; Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
Pareek, Vinay; Foundation for Research and Technology-Hellas (FORTH), Heraklion, Greece
Pasatembou, Elizabeth; Physics Department, Imperial College London, London, United Kingdom
Paternostro, Mauro; Dipartimento di Fisica e Chimica - Emilio Segrè, Università degli Studi di Palermo, Palermo, Italy ; Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queen’s University Belfast, Belfast, United Kingdom
Pathak, Vishal K.; BEC and Matterwave Optics Group, Institute of Electronic Structure and Lasers, Foundation for Research and Technology - Hellas, Crete, Greece
Pelucchi, Emanuele; Epitaxy and Physics of Nanostructures, Tyndall National Institute, University College Cork, Cork, Ireland
Pereira dos Santos, Franck; LNE-SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Paris, France
Peters, Achim; Institut für Physik and IRIS, Humboldt-Universität zu Berlin, Berlin, Germany
Pichery, Annie; Institut für Quantenoptik, Leibniz Universität Hannover, Hannover, Germany
Pikovski, Igor; Department of Physics, Stevens Institute of Technology, Hoboken, United States ; Fysikum, Stockholm University, Stockholm, Sweden
Pilaftsis, Apostolos; Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
Pislan, Florentina-Crenguta; Institute of Space Science - INFLPR Subsidiary, Magurele, Romania ; Faculty of Physics, University of Bucharest, Magurele, Romania
Plunkett, Robert; Fermi National Accelerator Laboratory, Batavia, United States
Poggiani, Rosa; Department of Physics “Enrico Fermi”, University of Pisa, Pisa, Italy
Prevedelli, Marco; Department of Physics and Astronomy, University of Bologna, Bologna, Italy
Rafelski, Johann; Department of Physics, The University of Arizona, Tucson, United States
Raidal, Juhan; Keemilise ja bioloogilise füüsika instituut, Tallinn, Estonia
Raidal, Martti; Keemilise ja bioloogilise füüsika instituut, Tallinn, Estonia
Rasel, Ernst Maria; Institut für Quantenoptik, Leibniz Universität Hannover, Hannover, Germany
Renaux-Petel, Sébastien; Institut d’Astrophysique de Paris, Paris, France
Richaud, Andrea; Departament de Física, Universitat Politècnica de Catalunya, Barcelona, Spain
Rivero-Antunez, Pedro; BEC and Matterwave Optics Group, Institute of Electronic Structure and Lasers, Foundation for Research and Technology - Hellas, Crete, Greece
Rodzinka, Tangui; Laboratoire Collisions Agrégats Réactivité UMR5589, University of Toulouse III Paul Sabatier CNRS, Toulouse, France
Roura, Albert; Institute of Quantum Technologies, German Aerospace Center (DLR), Ulm, Germany
Rudolph, Jan; Department of Physics, Stanford University, Stanford, United States ; Fermi National Accelerator Laboratory, Batavia, United States
Sabulsky, Dylan; LNE-SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Paris, France
Safronova, Marianna S.; Department of Physics and Astronomy, University of Delaware, Delaware, United States
Sakellariadou, Mairi; Physics Department, King’s College London, London, United Kingdom
Salvi, Leonardo; Dipartimento di Fisica e Astronomia and LENS, Università di Firenze, INFN Sezione di Firenze, Sesto Fiorentino (FI), Italy
Sarkar, Sumit; Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Amsterdam, Netherlands
Schach, Patrik; Fachbereich Physik, Institut für Angewandte Physik, Technische Universität Darmstadt, Darmstadt, Germany
Schäffer, Stefan Alaric; Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
Schelfhout, Jesse; Department of Physics, University of Oxford, Oxford, United Kingdom
Schilling, Manuel; Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Satellitengeodäsie und Inertialsensorik, Hannover, Germany
Schkolnik, Vladimir; Institut für Physik and IRIS, Humboldt-Universität zu Berlin, Berlin, Germany
Schleich, Wolfgang P.; Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Ulm, Germany
Schlippert, Dennis; Institut für Quantenoptik, Leibniz Universität Hannover, Hannover, Germany
Schneider, Ulrich; Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
Schreck, Florian; Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Amsterdam, Netherlands ; QuSoft, Amsterdam, Netherlands
Schwartzman, Ariel; SLAC National Accelerator Laboratory, Menlo Park, United States
Schwersenz, Nico; Institute of Quantum Technologies, German Aerospace Center (DLR), Ulm, Germany
Sergijenko, Olga; Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine ; AGH University of Krakow, Krakow, Poland
Sfar, Haifa Rejeb; Department of Physics, University at Buffalo, State University of New York, Buffalo, United States
Shao, Lijing; Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing, China
Shipsey, Ian; Department of Physics, University of Oxford, Oxford, United Kingdom
Shu, Jing; Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing, China ; School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China ; Beijing Laser Acceleration Innovation Center, Beijing, China
Singh, Yeshpal; Cold Atoms Group, School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
Sopuerta, Carlos F.; Campus UAB, Institut de Ciències de l’Espai (ICE-CSIC), Cerdanyola del Vallès, Spain ; Institut d’Estudis Espacials de Catalunya (IEEC), Edifici RDIT, Castelldefels, Spain
Sorba, Marianna; SISSA, Trieste, Italy
Sorrentino, Fiodor; Sezione di Genova, Istituto Nazionale di Fisica Nucleare, Genova, Italy
Spallicci, Alessandro D. A. M.; Laboratoire de Physique et Chimie de l’Environnement et de l’Espace, Université d’Orléans, Orléans, France
Stefanescu, Petruta; Institute of Space Science - INFLPR Subsidiary, Magurele, Romania
Stergioulas, Nikolaos; Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
Stoerk, Daniel; Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Ulm, Germany
Thaivalappil Sunilkumar, Hrudya; Institut für Physik and IRIS, Humboldt-Universität zu Berlin, Berlin, Germany
Ströhle, Jannik; Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Ulm, Germany
Tam, Zoie; Harwell Campus, STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
Tandon, Dhruv; Department of Physics, Stanford University, Stanford, United States
Tang, Yijun; Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
Tell, Dorothee; Max-Planck-Institut für Quantenoptik, Garching, Germany
Temples, Dylan J.; Fermi National Accelerator Laboratory, Batavia, United States
Thampy, Rohit P.; Foundation for Research and Technology-Hellas (FORTH), Heraklion, Greece
Tietje, Ingmari C.; Institut für Physik and IRIS, Humboldt-Universität zu Berlin, Berlin, Germany
Tino, Guglielmo M.; Dipartimento di Fisica e Astronomia and LENS, Università di Firenze, INFN Sezione di Firenze, Sesto Fiorentino (FI), Italy
Tinsley, Jonathan N.; Department of Physics, University of Liverpool, Merseyside, United Kingdom
Tintareanu Mircea, Ovidiu; Institute of Space Science - INFLPR Subsidiary, Magurele, Romania
Tkalčec, Kimberly; Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
Tolley, Andrew J.; Physics Department, Imperial College London, London, United Kingdom
Tornatore, Vincenza; Politecnico di Milano, DICA, Milan, Italy
Torres-Orjuela, Alejandro; Beijing Institute of Mathematical Sciences and Applications, Beijing, China
Treutlein, Philipp; Department of Physics, University of Basel, Basel, Switzerland
Trombettoni, Andrea; Department of Physics, University of Trieste, Trieste, Italy
Ufrecht, Christian; Self-Learning Systems Group, Fraunhofer IIS, Nuremberg, Germany
Urrutia, Juan; Keemilise ja bioloogilise füüsika instituut, Tallinn, Estonia ; Departament of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
Valerio, Linda R.; Fermi National Accelerator Laboratory, Batavia, United States
van der Grinten, Maurits; Harwell Campus, STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
Vaskonen, Ville; Keemilise ja bioloogilise füüsika instituut, Tallinn, Estonia ; Sezione di Padova, Istituto Nazionale di Fisica Nucleare, Padova, Italy ; Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Padova, Italy
Vázquez-Aceves, Verónica; Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing, China
Veermäe, Hardi; Keemilise ja bioloogilise füüsika instituut, Tallinn, Estonia
Vetrano, Flavio; Virgo Group, DiSPeA, Carlo Bo University, Urbino, Italy
Vitanov, Nikolay V.; Center for Quantum Technologies, Faculty of Physics, Sofia University, Sofia, Bulgaria
von Klitzing, Wolf; BEC and Matterwave Optics Group, Institute of Electronic Structure and Lasers, Foundation for Research and Technology - Hellas, Crete, Greece
Wald, Sebastian; Institute of Science and Technology Austria, Klosterneuburg, Austria
Walker, Thomas; Physics Department, Imperial College London, London, United Kingdom
Walser, Reinhold; Institute for Applied Physics, Technical University of Darmstadt, Darmstadt, Germany
Wang, Jin; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
Wang, Yan; School of Civil, Aerospace and Design Engineering, University of Bristol, Bristol, United Kingdom
Weidner, C.A.; Quantum Engineering Technology Laboratories, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol, United Kingdom
Wenzlawski, André; Johannes Gutenberg University, Mainz, Germany
Werner, Michael; Institut für Quantenoptik, Leibniz Universität Hannover, Hannover, Germany
Wörner, Lisa; Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Satellitengeodäsie und Inertialsensorik, Hannover, Germany
Yahia, Mohamed E.; Abu Dhabi Polytechnic, Institute of Applied Technology, Abu Dhabi, United Arab Emirates
Yazgan, Efe; Department of Physics, National Taiwan University, Taipei, Taiwan
Zambrini Cruzeiro, Emmanuel; Instituto de Telecomunicações, Lisbon, Portugal
Zarei, M.; Department of Physics, Isfahan University of Technology, Isfahan, Iran
Zhan, Mingsheng; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
Zhang, Shengnan; Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
Zhou, Lin; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
Zupanič, Erik; Jožef Stefan Institute, Ljubljana, Slovenia ; AtomQL, Ljubljana, Slovenia
The workshop was partially funded by contributions from the Long Range Broad Agency Announcement (BAA) for the Navy and Marine Corps Science and Technology programme, Hannover Leibniz University, and the Physics Department at Imperial College London.We acknowledge the support of the CERN Physics Beyond Collider activity, the CERN Quantum Technology Initiative, the Long Range Broad Agency Announcement (BAA) for the Navy and Marine Corps Science and Technology programme, Hannover Leibniz University, and the Physics Department at Imperial College London, whose contributions were instrumental in supporting the workshop that laid the foundation for this paper.
Second Terrestrial Very-Long-Baseline Atom Interferometry Workshop, Imperial College, April 2024. 2024. https://indico.cern.ch/event/1369392/.
First Terrestrial Very-Long-Baseline Atom Interferometry Workshop, CERN, March 2023. https://indico.cern.ch/event/1208783/.
S. Abend et al. Terrestrial very-long-baseline atom interferometry: workshop summary AVS Quantum Sci 6 2024AVSQS..6b4701A 10.1116/5.0185291 024701 arXiv:2310.08183
Memorandum of Understanding for the Terrestrial Very Long Baseline Atom Interferometer Study. https://indico.cern.ch/event/1369392/attachments/2789312/5096609/TVLBAI%20Study%20MOU%20-%20Final%20.pdf.
O. Buchmueller J. Ellis U. Schneider Large-scale atom interferometry for fundamental physics Contemp Phys 64 93 2023ConPh.64..93B 0042.02706 10.1080/00107514.2023.2239008 arXiv:2306.17726
A.A. Geraci A. Derevianko Sensitivity of atom interferometry to ultralight scalar field dark matter Phys Rev Lett 117 2016PhRvL.117z1301G 07945092 10.1103/PhysRevLett.117.261301 261301 arXiv:1605.04048
A. Arvanitaki P.W. Graham J.M. Hogan S. Rajendran K. Van Tilburg Search for light scalar dark matter with atomic gravitational wave detectors Phys Rev D 97 2018PhRvD.97g5020A 10.1103/PhysRevD.97.075020 075020
S. Dimopoulos P.W. Graham J.M. Hogan M.A. Kasevich S. Rajendran Gravitational wave detection with atom interferometry Phys Lett B 678 37 2009PhLB.678..37D 10.1016/j.physletb.2009.06.011 arXiv:0712.1250
S. Dimopoulos P.W. Graham J.M. Hogan M.A. Kasevich S. Rajendran Atomic gravitational wave interferometric sensor Phys Rev D 78 10.1103/PhysRevD.78.122002 1753
S.M. Dickerson J.M. Hogan A. Sugarbaker D.M.S. Johnson M.A. Kasevich Multiaxis inertial sensing with long-time point source atom interferometry Phys Rev Lett 111 2013PhRvL.111h3001D 10.1103/PhysRevLett.111.083001 083001
D. Schlippert C. Meiners R. Rengelink C. Schubert D. Tell É. Wodey et al. Matter-wave interferometry for inertial sensing and tests of fundamental physics Proceedings of the eighth meeting on CPT and Lorentz symmetry Singapore World Scientific 37 40 10.1142/9789811213984_0010
L. Badurina E. Bentine D. Blas K. Bongs D. Bortoletto T. Bowcock et al. AION: an Atom Interferometer Observatory and Network J Cosmol Astropart Phys 2020 10.1088/1475-7516/2020/05/011 011
B. Canuel et al. Exploring gravity with the MIGA large scale atom interferometer Sci Rep 8 2018NatSR..814064C 10.1038/s41598-018-32165-z 14064 arXiv:1703.02490
M.-S. Zhan J. Wang W.-T. Ni D.-F. Gao G. Wang L.-X. He et al. ZAIGA: Zhaoshan long-baseline Atom Interferometer Gravitation Antenna Int J Mod Phys D 29 2020IJMPD.2940005Z 10.1142/S0218271819400054 1940005
M. Abe P. Adamson M. Borcean D. Bortoletto K. Bridges S.P. Carman et al. Matter-wave Atomic Gradiometer Interferometric Sensor (MAGIS-100) Quantum Sci Technol 6 2021QS&T..6d4003A 10.1088/2058-9565/abf719 044003
B. Canuel S. Abend P. Amaro-Seoane F. Badaracco Q. Beaufils A. Bertoldi et al. ELGAR—a European Laboratory for Gravitation and Atom-interferometric Research Class Quantum Gravity 37 2020CQGra.37v5017C 10.1088/1361-6382/aba80e 225017
Y.A. El-Neaj C. Alpigiani S. Amairi-Pyka H. Araújo A. Balaž A. Bassi et al. AEDGE: Atomic Experiment for Dark matter and Gravity Exploration in space EPJ Quantum Technol 7 10.1140/epjqt/s40507-020-0080-0 127
J. Ellis V. Vaskonen Probes of gravitational waves with atom interferometers Phys Rev D 101 2020PhRvD.101l4013E 4123516 1539.68326 10.1103/PhysRevD.101.124013 124013 arXiv:2003.13480
L. Badurina O. Buchmueller J. Ellis M. Lewicki C. McCabe V. Vaskonen Prospective sensitivities of atom interferometers to gravitational waves and ultralight dark matter Philos Trans R Soc A, Math Phys Eng Sci 380 2022RSPTA.38010060B 10.1098/rsta.2021.0060 20210060 arXiv:2108.02468
NANOGrav collaboration The NANOGrav 15 yr data set: observations and timing of 68 millisecond pulsars Astrophys J Lett 951 2023ApJ..951L..9A 1079.70523 10.3847/2041-8213/acda9a L9 arXiv:2306.16217
EPTA & InPTA collaboration The second data release from the European pulsar timing array - IV. Implications for massive black holes, dark matter, and the early Universe Astron Astrophys 685 07953442 10.1051/0004-6361/202347433 A94 arXiv:2306.16227
Parkes Pulsar Timing Array collaboration. The Parkes Pulsar Timing Array Third Data Release. arXiv: 2306.16230.
Chinese Pulsar Timing Array collaboration. Searching for the nano-Hertz stochastic gravitational wave background with the Chinese Pulsar Timing Array Data Release I. arXiv:2306.16216.
Ellis J, Fairbairn M, Hütsi G, Urrutia J, Vaskonen V, Veermäe H. Consistency of JWST Black Hole Observations with NANOGrav Gravitational Wave Measurements. arXiv: 2403.19650.
Ellis J, Fairbairn M, Franciolini G, Hütsi G, Iovino A, Lewicki M, et al. What is the source of the PTA GW signal? arXiv: 2308.08546.
M. Schilling E. Wodey L. Timmen D. Tell K.H. Zipfel D. Schlippert et al. Gravity field modelling for the Hannover 10 m atom interferometer J Geod 94 10.1007/s00190-020-01451-y 203003
É. Wodey M. Schilling D. Tell C. Schubert D. Schlippert W. Ertmer et al. Towards gravity reference stations with very long baseline atom interferometry Geophysical research abstracts 21
Q. Beaufils L.A. Sidorenkov P. Lebegue B. Venon D. Holleville L. Volodimer et al. Cold-atom sources for the Matter-wave laser Interferometric Gravitation Antenna (MIGA) Sci Rep 12 10.1038/s41598-022-23468-3 231102
Cold Atoms and Climate Change (Inter-disciplinary Workshop on Environmental Applications of Quantum Sensors) March 2022. https://indico.kcl.ac.uk/event/268/.
L. Zehnder Ein neuer Interferenzrefraktor Z Instrum 11 275
L. Mach Ueber einen Interferenzrefraktor Z Instrum 12 89 24.0996.01
L. Badurina V. Gibson C. McCabe J. Mitchell Ultralight dark matter searches at the sub-Hz frontier with atom multigradiometry Phys Rev D 107 2023PhRvD.107e5002B 10.1103/PhysRevD.107.055002 055002 arXiv:2211.01854
R.L. Workman et al. Review of particle physics Prog Theor Exp Phys 2022 0454.68095 10.1093/ptep/ptac097 083C01
Arcadi G, Cabo-Almeida D, Dutra M, Ghosh P, Lindner M, Mambrini Y, et al. The waning of the WIMP: endgame? arXiv e-prints. 2024. arXiv: 2403.15860.
Battaglieri M, et al. US cosmic visions: new Ideas in dark matter 2017: community report. arXiv e-prints. 2017. arXiv:1707.04591.
Chou A, Irwin K, Maruyama RH, Baker OK, Bartram C, Berggren KK, et al. Quantum sensors for high energy physics. 2023. arXiv: 2311.01930.
Antypas D, et al. New horizons: scalar and vector ultralight dark matter. 2022. arXiv: 2203.14915.
M.S. Safronova D. Budker D. DeMille D.F.J. Kimball A. Derevianko C.W. Clark Search for new physics with atoms and molecules Rev Mod Phys 90 2018RvMP..90b5008S 3833240 10.1103/RevModPhys.90.025008 025008
LIGO Scientific, Virgo collaboration Observation of gravitational waves from a binary black hole merger Phys Rev Lett 116 2016PhRvL.116f1102A 3707758 1390.37132 10.1103/PhysRevLett.116.061102 061102 arXiv:1602.03837
KAGRA, VIRGO, LIGO Scientific collaboration GWTC-3: compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run Phys Rev X 13 041039 arXiv:2111.03606
NANOGrav collaboration The NANOGrav 15 yr data set: evidence for a gravitational-wave background Astrophys J Lett 951 2023ApJ..951L..8A 1122.83301 10.3847/2041-8213/acdac6 L8
EPTA collaboration. The second data release from the European Pulsar Timing Array IV. Search for continuous gravitational wave signals. arXiv:2306.16226.
NANOGrav collaboration The NANOGrav 15 yr data set: constraints on supermassive black hole binaries from the gravitational-wave background Astrophys J Lett 952 2023ApJ..952L.37A 1181.85077 10.3847/2041-8213/ace18b L37
C.J. Moore R.H. Cole C.P.L. Berry Gravitational-wave sensitivity curves Class Quantum Gravity 32 2015CQGra.32a5014M 1207.83045 10.1088/0264-9381/32/1/015014 015014 arXiv:1408.0740
LIGO, Virgo and KAGRA Observing Run Plans. 2024. https://observing.docs.ligo.org/plan/#.
Evans M, et al. Cosmic explorer: a submission to the NSF MPSAC ngGW Subcommittee. arXiv: 2306.13745.
M. Maggiore et al. Science case for the Einstein Telescope J Cosmol Astropart Phys 03 2020JCAP..03.050M 1454.46074 10.1088/1475-7516/2020/03/050 050 arXiv:1912.02622
LISA collaboration. Laser Interferometer Space Antenna. arXiv: 1702.00786.
Colpi M, et al. LISA Definition Study Report. arXiv: 2402.07571.
A. Torres-Orjuela Detecting intermediate-mass black hole binaries with atom interferometer observatories: using the resonant mode for the merger phase AVS Quantum Sci 5 2023AVSQS..5d5002T 1544.83025 10.1116/5.0162505 045002 arXiv:2306.08898
R. Valiante M. Colpi R. Schneider A. Mangiagli M. Bonetti G. Cerini et al. Unveiling early black hole growth with multifrequency gravitational wave observations Mon Not R Astron Soc 500 4095 2021MNRAS.500.4095V 10.1093/mnras/staa3395 arXiv:2010.15096
P.C. Peters J. Mathews Gravitational radiation from point masses in a Keplerian orbit Phys Rev 131 435 1963PhRv.131.435P 154716 0114.43902 10.1103/PhysRev.131.435
M.A. Sedda C.P.L. Berry K. Jani P. Amaro-Seoane P. Auclair J. Baird et al. The missing link in gravitational-wave astronomy: discoveries waiting in the decihertz range Class Quantum Gravity 37 2020CQGra.37u5011A 10.1088/1361-6382/abb5c1 215011
M. Livio J.C. Niemeyer J.W. Truran The progenitors of type Ia supernovae Type Ia supernovae, theory and cosmology 33 10.48550/arXiv.astro-ph/9903264 1373.37008 arXiv:astro-ph/9903264
I. Mandel A. Sesana A. Vecchio The astrophysical science case for a decihertz gravitational-wave detector Class Quantum Gravity 35 2018CQGra.35e4004M 1188.83035 10.1088/1361-6382/aaa7e0 054004 arXiv:1710.11187
P.W. Graham S. Jung Localizing gravitational wave sources with single-baseline atom interferometers Phys Rev D 97 2018PhRvD.97b4052G 10.1103/PhysRevD.97.024052 024052
R. Ruffini S. Bonazzola Systems of selfgravitating particles in general relativity and the concept of an equation of state Phys Rev 187 1767 1969PhRv.187.1767R 0124.45105 10.1103/PhysRev.187.1767
J. Eby M. Leembruggen P. Suranyi L.C.R. Wijewardhana Collapse of axion stars J High Energy Phys 12 2016JHEP..12.066E 1380.85006 10.1007/JHEP12(2016)066 066 arXiv:1608.06911
D.G. Levkov A.G. Panin I.I. Tkachev Relativistic axions from collapsing Bose stars Phys Rev Lett 118 2017PhRvL.118a1301L 10.1103/PhysRevLett.118.011301 011301 arXiv:1609.03611
J. Eby P. Suranyi L.C.R. Wijewardhana The lifetime of axion stars Mod Phys Lett A 31 2016MPLA..3150090E 3501416 1338.85002 10.1142/S0217732316500905 1650090 arXiv:1512.01709
J. Eby S. Shirai Y.V. Stadnik V. Takhistov Probing relativistic axions from transient astrophysical sources Phys Lett B 825 10.1016/j.physletb.2021.136858 136858 arXiv:2106.14893
Arakawa J, Eby J, Safronova MS, Takhistov V, Zaheer MH. Detection of Bosenovae with Quantum Sensors on Earth and in Space. arXiv: 2306.16468.
Arakawa J, Zaheer MH, Eby J, Takhistov V, Safronova MS. Bosenovae with Quadratically-Coupled Scalars in Quantum Sensing Experiments. arXiv: 2402.06736.
Maseizik D, Sigl G. Distributions and Collision Rates of ALP Stars in the Milky Way. arXiv: 2404.07908.
Gorghetto M, Hardy E, Villadoro G. More Axion Stars from Strings. arXiv: 2405.19389.
Chang JH, Fox PJ, Xiao H. Axion stars: mass functions and constraints. arXiv: 2406.09499.
Roura A. Atom interferometer as a freely falling clock for time-dilation measurements. Quantum Sci Technol. 2025. In press. arXiv: 2402.11065.
Arduini G, et al. A Long-Baseline Atom Interferometer at CERN: conceptual feasibility study. arXiv: 2304.00614.
A. Roura Gravitational redshift in quantum-clock interferometry Phys Rev X 10 0996.68038 021014
S. Sinha J. Samuel Atom interferometry and the gravitational redshift Class Quantum Gravity 28 2011CQGra.28n5018S 1225.83008 10.1088/0264-9381/28/14/145018 145018
M. Zych F. Costa I. Pikovski U. Brukner Quantum interferometric visibility as a witness of general relativistic proper time Nat Commun 2 166 1512.81053 10.1038/ncomms1498
S. Loriani D. Schlippert C. Schubert S. Abend H. Ahlers W. Ertmer et al. Atomic source selection in space-borne gravitational wave detection New J Phys 21 10.1088/1367-2630/ab22d0 063030
A. Roura C. Schubert D. Schlippert E.M. Rasel Measuring gravitational time dilation with delocalized quantum superpositions Phys Rev D 104 2021PhRvD.104h4001R 10.1103/PhysRevD.104.084001 084001
C. Ufrecht F. Di Pumpo A. Friedrich A. Roura C. Schubert D. Schlippert et al. Atom-interferometric test of the universality of gravitational redshift and free fall Phys Rev Res 2 10.1103/PhysRevResearch.2.043240 043240
F. Di Pumpo C. Ufrecht A. Friedrich E. Giese W.P. Schleich W.G. Unruh Gravitational redshift tests with atomic clocks and atom interferometers PRX Quantum 2 411 10.1103/PRXQuantum.2.040333
F. Di Pumpo A. Friedrich C. Ufrecht E. Giese Universality-of-clock-rates test using atom interferometry with T3 scaling Phys Rev D 107 10.1103/PhysRevD.107.064007 411
LISA Collaboration. Laser Interferometer Space Antenna. arXiv: 1702.00786.
W.-H. Ruan Z.-K. Guo R.-G. Cai Y.-Z. Zhang Taiji program: gravitational-wave sources Int J Mod Phys A 35 2020IJMPA.3550075R 10.1142/S0217751X2050075X 2050075
TianQin collaboration TianQin: a space-borne gravitational wave detector Class Quantum Gravity 33 1358.83024 10.1088/0264-9381/33/3/035010 035010 arXiv:1512.02076
B. Sathyaprakash et al. Scientific objectives of Einstein Telescope Class Quantum Gravity 29 2012CQGra.29l4013S 1435.53034 10.1088/0264-9381/29/12/124013 124013 arXiv:1206.0331
D. Reitze R.X. Adhikari S. Ballmer B. Barish L. Barsotti G. Billingsley et al. Cosmic explorer: the U.S. contribution to gravitational-wave astronomy beyond LIGO Bull Am Astron Soc 51 1
LIGO Scientific, Virgo collaboration GW170817: observation of gravitational waves from a binary neutron star inspiral Phys Rev Lett 119 2017PhRvL.119p1101A 1228.83015 10.1103/PhysRevLett.119.161101 161101 arXiv:1710.05832
LIGO Scientific, Virgo, Fermi GBM, INTEGRAL, IceCube, AstroSat Cadmium Zinc Telluride Imager Team, IPN, Insight-Hxmt, ANTARES, Swift, AGILE Team, 1M2H Team, Dark Energy Camera GW-EM, DES, DLT40, GRAWITA, Fermi-LAT, ATCA, ASKAP, Las Cumbres Observatory Group, OzGrav, DWF (Deeper Wider Faster Program), AST3, CAASTRO, VINROUGE, MASTER, J-GEM, GROWTH, JAGWAR, CaltechNRAO, TTU-NRAO, NuSTAR, Pan-STARRS, MAXI Team, TZAC Consortium, KU, Nordic Optical Telescope, ePESSTO, GROND, Texas Tech University, SALT Group, TOROS, BOOTES, MWA, CALET, IKI-GW Follow-up, H.E.S.S., LOFAR, LWA, HAWC, Pierre Auger, ALMA, Euro VLBI Team, Pi of Sky, Chandra Team at McGill University, DFN, ATLAS Telescopes, High Time Resolution Universe Survey, RIMAS, RATIR, SKA South Africa/MeerKAT collaboration Multi-messenger observations of a binary neutron star merger Astrophys J Lett 848 2017ApJ..848L.12A 10.3847/2041-8213/aa91c9 L12 arXiv:1710.05833
KAGRA, VIRGO, LIGO Scientific collaboration Population of merging compact binaries inferred using gravitational waves through GWTC-3 Phys Rev X 13 011048 arXiv:2111.03634
LIGO Scientific, Virgo collaboration GW190521: a binary black hole merger with a total mass of 150M⊙ Phys Rev Lett 125 2020PhRvL.125j1102A 1451.92277 10.1103/PhysRevLett.125.101102 101102 arXiv:2009.01075
S. Fairhurst C. Mills M. Colpi R. Schneider A. Sesana A. Trinca et al. Identifying heavy stellar black holes at cosmological distances with next-generation gravitational-wave observatories Mon Not R Astron Soc 529 2116 2024MNRAS.529.2116F 10.1093/mnras/stae443 arXiv:2310.18158
C. Mills S. Fairhurst Measuring gravitational-wave higher-order multipoles Phys Rev D 103 2021PhRvD.103b4042M 1217.83022 10.1103/PhysRevD.103.024042 024042 arXiv:2007.04313
Torres-Orjuela A. Black hole spectroscopy with ground-based atom interferometer and space-based laser interferometer gravitational wave detectors. arXiv: 2405.10551.
J. Ellis M. Fairbairn J. Urrutia V. Vaskonen Probing supermassive black hole seed scenarios with gravitational-wave measurements Astrophys J 964 11 2024ApJ..964..11E 10.3847/1538-4357/ad27d5 arXiv:2312.02983
A. Toubiana L. Sberna A. Caputo G. Cusin S. Marsat K. Jani et al. Detectable environmental effects in GW190521-like black-hole binaries with LISA Phys Rev Lett 126 2021PhRvL.126j1105T 10.1103/PhysRevLett.126.101105 101105
L. Sberna S. Babak S. Marsat A. Caputo G. Cusin A. Toubiana et al. Observing GW190521-like binary black holes and their environment with LISA Phys Rev D 106 2022PhRvD.106f4056S 10.1103/PhysRevD.106.064056 064056
C. Caprini M. Chala G.C. Dorsch M. Hindmarsh S.J. Huber T. Konstandin et al. Detecting gravitational waves from cosmological phase transitions with LISA: an update J Cosmol Astropart Phys 2020 10.1088/1475-7516/2020/03/024 024
P. Auclair J.J. Blanco-Pillado D.G. Figueroa A.C. Jenkins M. Lewicki M. Sakellariadou et al. Probing the gravitational wave background from cosmic strings with LISA J Cosmol Astropart Phys 2020 1486.83089 10.1088/1475-7516/2020/04/034 034
LIGO Scientific, VIRGO, KAGRA collaboration. Tests of General Relativity with GWTC-3. arXiv: 2112.06861.
LIGO Scientific, VIRGO collaboration Search for lensing signatures in the gravitational-wave observations from the first half of LIGO–Virgo’s third observing run Astrophys J 923 14 2021ApJ..923..14A 1064.83519 10.3847/1538-4357/ac23db arXiv:2105.06384
M. Volonteri Formation of supermassive black holes Astron Astrophys Rev 18 279 2010A&ARv.18.279V 1165.83330 10.1007/s00159-010-0029-x arXiv:1003.4404
M. Volonteri P. Natarajan Journey to the MBH−σ relation: the fate of low mass black holes in the Universe Mon Not R Astron Soc 400 1911 2009MNRAS.400.1911V 1165.83330 10.1111/j.1365-2966.2009.15577.x arXiv:0903.2262
J. Kormendy L.C. Ho Coevolution (or not) of supermassive black holes and host galaxies Annu Rev Astron Astrophys 51 511 2013ARA&A.51.511K 0639.68122 10.1146/annurev-astro-082708-101811 arXiv:1304.7762
U. Chadayammuri A. Bogdan A. Ricarte P. Natarajan Constraints from dwarf galaxies on black hole seeding and growth models with current and future surveys Astrophys J 946 51 2023ApJ..946..51C 10.3847/1538-4357/acbea6 arXiv:2212.04693
J. Ellis M. Fairbairn G. Hütsi J. Raidal J. Urrutia V. Vaskonen et al. Gravitational waves from supermassive black hole binaries in light of the NANOGrav 15-year data Phys Rev D 109 2024PhRvD.109b1302E 1515.83080 10.1103/PhysRevD.109.L021302 L021302 arXiv:2306.17021
Raidal J, Urrutia J, Vaskonen V, Veermäe H. Eccentricity effects on the SMBH GW background. arXiv: 2406.05125.
F. Pacucci B. Nguyen S. Carniani R. Maiolino X. Fan JWST CEERS and JADES active galaxies at z=4−7 violate the local M•−M⋆ relation at >3σ: implications for low-mass black holes and seeding models Astrophys J Lett 957 2023ApJ..957L..3P 10.3847/2041-8213/ad0158 L3 arXiv:2308.12331
J. Matthee et al. Little red dots: an abundant population of faint active galactic nuclei at z∼5 revealed by the EIGER and FRESCO JWST surveys Astrophys J 963 129 2024ApJ..963.129M 10.3847/1538-4357/ad2345 arXiv:2306.05448
Perna M, Arribas S, Lamperti I, Circosta C, Bertola E, Pérez-González PG, et al. A surprisingly high number of dual active galactic nuclei in the early Universe. arXiv: 2310.03067.
V. Giovannetti S. Lloyd L. Maccone Quantum metrology Phys Rev Lett 96 2006PhRvL.96a0401G 2196458 1228.81125 10.1103/PhysRevLett.96.010401 010401
L. Pezzè A. Smerzi M.K. Oberthaler R. Schmied P. Treutlein Quantum metrology with nonclassical states of atomic ensembles Rev Mod Phys 90 2018RvMP..90c5005P 3861238 1514.82030 10.1103/RevModPhys.90.035005 035005
T. Kovachy P. Asenbaum C. Overstreet C.A. Donnelly S.M. Dickerson A. Sugarbaker et al. Quantum superposition at the half-metre scale Nature 528 530 2015Natur.528.530K 10.1038/nature16155
S. Chiow T. Kovachy H. Chien M.A. Kasevich 102 ħk large area atom interferometers Phys Rev Lett 107 2011PhRvL.107m0403C 10.1103/PhysRevLett.107.130403 130403
K.E. McAlpine D. Gochnauer S. Gupta Excited-band Bloch oscillations for precision atom interferometry Phys Rev A 101 2020PhRvA.101b3614M 10.1103/PhysRevA.101.023614 023614
J.M. McGuirk M.J. Snadden M.A. Kasevich Large area light-pulse atom interferometry Phys Rev Lett 85 4498 2000PhRvL.85.4498M 0947.78601 10.1103/PhysRevLett.85.4498
T. Wilkason M. Nantel J. Rudolph Y. Jiang B.E. Garber H. Swan et al. Atom interferometry with Floquet atom optics Phys Rev Lett 129 2022PhRvL.129r3202W 10.1103/PhysRevLett.129.183202 183202
A. Bott F. Di Pumpo E. Giese Atomic diffraction from single-photon transitions in gravity and standard-model extensions AVS Quantum Sci 5 2023AVSQS..5d4402B 10.1116/5.0174258 044402
K. Kotru D.L. Butts J.M. Kinast R.E. Stoner Large-area atom interferometry with frequency-swept Raman adiabatic passage Phys Rev Lett 115 2015PhRvL.115j3001K 10.1103/PhysRevLett.115.103001 103001
P. Berg S. Abend G. Tackmann C. Schubert E. Giese W. Schleich et al. Composite-light-pulse technique for high-precision atom interferometry Phys Rev Lett 114 2015PhRvL.114f3002B 10.1103/PhysRevLett.114.063002 063002
B. Plotkin-Swing D. Gochnauer K. McAlpine E. Cooper A. Jamison S. Gupta Three-path atom interferometry with large momentum separation Phys Rev Lett 121 2018PhRvL.121m3201P 10.1103/PhysRevLett.121.133201 133201
A. Béguin T. Rodzinka L. Calmels B. Allard A. Gauguet Atom interferometry with coherent enhancement of Bragg pulse sequences Phys Rev Lett 131 2023PhRvL.131n3401B 10.1103/PhysRevLett.131.143401 143401
Z. Pagel W. Zhong R.H. Parker C.T. Olund N.Y. Yao C. Yu et al. Symmetric Bloch oscillations of matter waves Phys Rev A 102 2020PhRvA.102e3312P 10.1103/PhysRevA.102.053312 053312
M. Gebbe S. Abend S. Jan-Niclas M. Gersemann H. Ahlers H. Müntinga et al. Twin-lattice atom interferometry Nat Commun 12 2544 2021NatCo.12.2544G 10.1038/s41467-021-22823-8
M. Bukov L. D’Alessio A. Polkovnikov Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering Adv Phys 64 139 2015AdPhy.64.139B 1366.70023 10.1080/00018732.2015.1055918
M. Kim R. Notermans C. Overstreet J. Curti P. Asenbaum M.A. Kasevich 40 W, 780 nm laser system with compensated dual beam splitters for atom interferometry Opt Lett 45 6555 2020OptL..45.6555K 10.1364/OL.404430
T. Rahman A. Wirth-Singh A. Ivanov D. Gochnauer E. Hough S. Gupta Bloch oscillation phases investigated by multi-path Stuckelberg atom interferometry Phys Rev Res 6 10.1103/PhysRevResearch.6.L022012 L022012
P.W. Graham J.M. Hogan M.A. Kasevich S. Rajendran New method for gravitational wave detection with atomic sensors Phys Rev Lett 110 2013PhRvL.110q1102G 10.1103/PhysRevLett.110.171102 171102
J. Rudolph T. Wilkason M. Nantel H. Swan C.M. Holland Y. Jiang et al. Large momentum transfer clock atom interferometry on the 689nm intercombination line of strontium Phys Rev Lett 124 2020PhRvL.124h3604R 10.1103/PhysRevLett.124.083604 083604
T. Wilkason M. Nantel J. Rudolph Y. Jiang B.E. Garber H. Swan et al. Atom interferometry with Floquet atom optics Phys Rev Lett 129 2022PhRvL.129r3202W 10.1103/PhysRevLett.129.183202 183202
T. Hong C. Cramer W. Nagourney E.N. Fortson Optical clocks based on ultranarrow three-photon resonances in alkaline Earth atoms Phys Rev Lett 94 2005PhRvL.94e0801H 10.1103/PhysRevLett.94.050801 050801
R. Santra E. Arimondo T. Ido C.H. Greene J. Ye High-accuracy optical clock via three-level coherence in neutral bosonic 88Sr Phys Rev Lett 94 2005PhRvL.94q3002S 10.1103/PhysRevLett.94.173002 173002
V.D. Ovsiannikov V.G. Pal’chikov A.V. Taichenachev V.I. Yudin H. Katori M. Takamoto Magic-wave-induced 1S0–3P0 transition in even isotopes of alkaline-Earth-metal-like atoms Phys Rev A 75 2007PhRvA.75b0501O 10.1103/PhysRevA.75.020501 020501(R)
E.A. Alden K.R. Moore A.E. Leanhardt Two-photon E1-M1 optical clock Phys Rev A 90 2014PhRvA.90a2523A 10.1103/PhysRevA.90.012523 012523
Carman SP, Rudolph J, Garber BE, Van de Graaff MJ, Swan H, Jiang Y, et al. Collinear three-photon excitation of a strongly forbidden optical clock transition. 2024. arXiv: 2406.07902.
L. Morel Y. Zhao P. Clade S. Guellati-Khelifa Determination of the fine-structure constant with an accuracy of 81 parts per trillion Nature 588 61 2020Natur.588..61M 10.1038/s41586-020-2964-7
D. Gochnauer K. McAlpine B. Plotkin-Swing A. Jamison S. Gupta Bloch-band picture for light-pulse atom diffraction and interferometry Phys Rev A 100 2019PhRvA.100d3611G 10.1103/PhysRevA.100.043611 043611
Fitzek F, Kirsten-Siemß J-N, Rasel E, Gaaloul N, Hammerer K. Accurate and efficient Bloch-oscillation-enhanced atom interferometry. 2023. arXiv: 2306.09399.
R. Sydnow Local oscillator induced instabilities in trapped ion frequency standards Washington U.S. Naval Observatory
S. Okaba R. Takeuchi S. Tsuji H. Katori Continuous generation of an ultracold atomic beam using crossed moving optical lattices Phys Rev Appl 21 2024PhRvP.21c4006O 10.1103/PhysRevApplied.21.034006 034006
R. Takeuchi H. Chiba S. Okaba M. Takamoto S. Tsuji H. Katori Continuous outcoupling of ultracold strontium atoms combining three different traps Appl Phys Express 16 2023APExp.16d2003T 10.35848/1882-0786/accb3c 042003
J. Chen Active optical clock Chin Sci Bull 54 348 1188.70041 10.1007/s11434-009-0073-y
D. Meiser J. Ye D.R. Carlson M.J. Holland Prospects for a millihertz-linewidth laser Phys Rev Lett 102 2009PhRvL.102p3601M 10.1103/PhysRevLett.102.163601 163601
Cline JRK, Schäfer VM, Niu Z, Young DJ, Yoon TH, Thompson JK. Continuous collective strong coupling between atoms and a high finesse optical cavity. 2022. https://doi.org/10.48550/arXiv.2211.00158. arXiv: 2211.00158.
N. Robins P. Altin J. Debs J. Close Atom lasers: production, properties and prospects for precision inertial measurement Phys Rep 529 265 2013PhR..529.265R 1288.81004 10.1016/j.physrep.2013.03.006
C.-C. Chen R. González Escudero J. Minář B. Pasquiou S. Bennetts F. Schreck Continuous Bose–Einstein condensation Nature 606 683 2022Natur.606.683C 10.1038/s41586-022-04731-z
C.-C. Chen S. Bennetts F. Schreck L.F. DiMauro H. Perrin S.F. Yelin Chapter six - the path to continuous Bose-Einstein condensation Advances in atomic, molecular, and optical physics San Diego Academic Press 361 430 10.1016/bs.aamop.2023.04.004 0982.68063 72
S. Stellmer B. Pasquiou R. Grimm F. Schreck Laser cooling to quantum degeneracy Phys Rev Lett 110 2013PhRvL.110z3003S 10.1103/PhysRevLett.110.263003 263003
J. Hu A. Urvoy Z. Vendeiro V. Crépel W. Chen V. Vuletiü Creation of a Bose-condensed gas of 87Rb by laser cooling Science 358 1078 2017Sci..358.1078H 10.1126/science.aan5614 https://www.science.org/doi/pdf/10.1126/science.aan5614
A. Urvoy Z. Vendeiro J. Ramette A. Adiyatullin V. Vuletić Direct laser cooling to Bose-Einstein condensation in a dipole trap Phys Rev Lett 122 2019PhRvL.122t3202U 10.1103/PhysRevLett.122.203202 203202
S. Bennetts C.-C. Chen B. Pasquiou F. Schreck Steady-state magneto-optical trap with 100-fold improved phase-space density Phys Rev Lett 119 2017PhRvL.119v3202B 10.1103/PhysRevLett.119.223202 223202
C.-C. Chen S. Bennetts R.G. Escudero B. Pasquiou F. Schreck Continuous guided strontium beam with high phase-space density Phys Rev Appl 12 2019PhRvP.12d4014C 10.1103/PhysRevApplied.12.044014 044014
C.-C. Chen J.L. Siegel B.D. Hunt T. Grogan Y.S. Hassan K. Beloy et al. Clock-line-mediated sisyphus cooling Phys Rev Lett 133 10.1103/PhysRevLett.133.053401 053401
He J, Pasquiou B, Escudero RG, Zhou S, Borkowski M, Schreck F. Coherent Three-Photon Excitation of the Strontium Clock Transition. 2024. https://doi.org/10.48550/arXiv.2406.07530. arXiv: 2406.07530.
C.-H. Feng P. Robert P. Bouyer B. Canuel J. Li S. Das et al. High flux strontium atom source Quantum Sci Technol 9 2024QS&T..9b5017F 10.1088/2058-9565/ad310b 025017
N.R. Hutzler H.-I. Lu J.M. Doyle The buffer gas beam: an intense, cold, and slow source for atoms and molecules Chem Rev 112 4803 10.1021/cr200362u 1467.53086
A. Impertro J.F. Wienand S. Häfele H. von Raven S. Hubele T. Klostermann et al. An unsupervised deep learning algorithm for single-site reconstruction in quantum gas microscopes Commun Phys 6 1 10.1038/s42005-023-01287-w
W.S. Bakr A. Peng M.E. Tai R. Ma J. Simon J.I. Gillen et al. Probing the superfluid–to–Mott insulator transition at the single-atom level Science 329 547 2010Sci..329.547B 10.1126/science.1192368
J.F. Sherson C. Weitenberg M. Endres M. Cheneau I. Bloch S. Kuhr Single-atom-resolved fluorescence imaging of an atomic Mott insulator Nature 467 68 2010Natur.467..68S 10.1038/nature09378
L.W. Cheuk M.A. Nichols M. Okan T. Gersdorf V.V. Ramasesh W.S. Bakr et al. Quantum-gas microscope for fermionic atoms Phys Rev Lett 114 2015PhRvL.114s3001C 10.1103/PhysRevLett.114.193001 193001
E. Haller J. Hudson A. Kelly D.A. Cotta B. Peaudecerf G.D. Bruce et al. Single-atom imaging of fermions in a quantum-gas microscope Nat Phys 11 738 10.1038/nphys3403
M.F. Parsons F. Huber A. Mazurenko C.S. Chiu W. Setiawan K. Wooley-Brown et al. Site-resolved imaging of fermionic 6Li in an optical lattice Phys Rev Lett 114 2015PhRvL.114u3002P 1355.81027 10.1103/PhysRevLett.114.213002 213002
C. Gross W.S. Bakr Quantum gas microscopy for single atom and spin detection Nat Phys 17 1316 1478.62228 10.1038/s41567-021-01370-5
M. Greiner O. Mandel T. Esslinger T.W. Hänsch I. Bloch Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms Nature 415 39 2002Natur.415..39G 10.1038/415039a
C. Weitenberg M. Endres J.F. Sherson M. Cheneau P. Schauß T. Fukuhara et al. Single-spin addressing in an atomic Mott insulator Nature 471 319 2011Natur.471.319W 10.1038/nature09827
B. Yang H. Sun C.-J. Huang H.-Y. Wang Y. Deng H.-N. Dai et al. Cooling and entangling ultracold atoms in optical lattices Science 369 550 2020Sci..369.550Y 1541.35467 10.1126/science.aaz6801
D. Wei A. Rubio-Abadal B. Ye F. Machado J. Kemp K. Srakaew et al. Quantum gas microscopy of Kardar-Parisi-Zhang superdiffusion Science 376 716 2022Sci..376.716W 10.1126/science.abk2397
Wienand JF, Karch S, Impertro A, Schweizer C, McCulloch E, Vasseur R, et al. Emergence of fluctuating hydrodynamics in chaotic quantum systems. Nat Phys. 2024.
A.M. Kaufman M.E. Tai A. Lukin M. Rispoli R. Schittko P.M. Preiss et al. Quantum thermalization through entanglement in an isolated many-body system Science 353 794 2016Sci..353.794K 1355.81038 10.1126/science.aaf6725
A. Lukin M. Rispoli R. Schittko M.E. Tai A.M. Kaufman S. Choi et al. Probing entanglement in a many-body–localized system Science 364 256 2019Sci..364.256L 1355.81038 10.1126/science.aau0818
M. Cheneau P. Barmettler D. Poletti M. Endres P. Schauß T. Fukuhara et al. Light-cone-like spreading of correlations in a quantum many-body system Nature 481 484 2012Natur.481.484C 10.1038/nature10748
Zheng Y-G, Zhang W-Y, Shen Y-C, Luo A, Liu Y, He M-G, et al. Efficiently Extracting Multi-Point Correlations of a Floquet Thermalized System. 2022. arXiv: 2210.08556.
A. Impertro S. Karch J.F. Wienand S. Huh C. Schweizer I. Bloch et al. Local readout and control of current and kinetic energy operators in optical lattices Phys Rev Lett 133 10.1103/PhysRevLett.133.063401 063401
M. Greiner I. Bloch T.W. Hänsch T. Esslinger Magnetic transport of trapped cold atoms over a large distance Phys Rev A 63 2001PhRvA.63c1401G 07647205 10.1103/PhysRevA.63.031401 031401
H.J. Lewandowski D.M. Harber D.L. Whitaker E.A. Cornell Observation of anomalous spin-state segregation in a trapped ultracold vapor Phys Rev Lett 88 2002PhRvL.88g0403L 10.1103/PhysRevLett.88.070403 070403
D. Pertot D. Greif S. Albert B. Gadway D. Schneble Versatile transporter apparatus for experiments with optically trapped Bose–Einstein condensates J Phys, B At Mol Opt Phys 42 2009JPhB..42u5305P 10.1088/0953-4075/42/21/215305 215305
C. Gross H.C.J. Gan K. Dieckmann All-optical production and transport of a large 6Li quantum gas in a crossed optical dipole trap Phys Rev A 93 2016PhRvA.93e3424G 42.0194.06 10.1103/PhysRevA.93.053424 053424
A. Couvert T. Kawalec G. Reinaudi D. Guéry-Odelin Optimal transport of ultracold atoms in the non-adiabatic regime Europhys Lett 83 2008EL...8313001C 10.1209/0295-5075/83/13001 13001
J. Léonard M. Lee A. Morales T.M. Karg T. Esslinger T. Donner Optical transport and manipulation of an ultracold atomic cloud using focus-tunable lenses New J Phys 16 10.1088/1367-2630/16/9/093028 093028
G. Unnikrishnan C. Beulenkamp D. Zhang K.P. Zamarski M. Landini H.-C. Nägerl Long distance optical transport of ultracold atoms: a compact setup using a Moiré lens Rev Sci Instrum 92 2021RScI..92f3205U 10.1063/5.0049320 063205
D. Schrader S. Kuhr W. Alt M. Müller V. Gomer D. Meschede An optical conveyor belt for single neutral atoms Appl Phys B 73 819 2001ApPhB.73.819S 10.1007/s003400100722
S. Schmid G. Thalhammer K. Winkler F. Lang J.H. Denschlag Long distance transport of ultracold atoms using a 1D optical lattice New J Phys 8 159 1115.65062 10.1088/1367-2630/8/8/159
T. Klostermann C.R. Cabrera H. von Raven J.F. Wienand C. Schweizer I. Bloch et al. Fast long-distance transport of cold cesium atoms Phys Rev A 105 2022PhRvA.105d3319K 10.1103/PhysRevA.105.043319 043319
M. Kasevich S. Chu Atomic interferometry using stimulated Raman transitions Phys Rev Lett 67 181 1991PhRvL.67.181K 10.1103/PhysRevLett.67.181
A. Peters K.Y. Chung S. Chu High-precision gravity measurements using atom interferometry Metrologia 38 25 2001Metro.38..25P 1005.91087 10.1088/0026-1394/38/1/4
T. Hensel S. Loriani C. Schubert F. Fitzek S. Abend H. Ahlers et al. Inertial sensing with quantum gases: a comparative performance study of condensed versus thermal sources for atom interferometry Eur Phys J D 75 2021EPJD..75.108H 10.1140/epjd/s10053-021-00069-9 108
J. Hartwig S. Abend C. Schubert D. Schlippert H. Ahlers K. Posso-Trujillo et al. Testing the universality of free fall with rubidium and ytterbium in a very large baseline atom interferometer New J Phys 17 10.1088/1367-2630/17/3/035011 035011
STE-QUEST collaboration. STE-QUEST: Space Time Explorer and QUantum Equivalence principle Space Test. arXiv: 2211.15412.
H. Ammann N. Christensen Delta kick cooling: a new method for cooling atoms Phys Rev Lett 78 2088 1997PhRvL.78.2088A 0269.68011 10.1103/PhysRevLett.78.2088
T. Kovachy J.M. Hogan A. Sugarbaker S.M. Dickerson C.A. Donnelly C. Overstreet et al. Matter wave lensing to picokelvin temperatures Phys Rev Lett 114 2015PhRvL.114n3004K 10.1103/PhysRevLett.114.143004 143004
C. Deppner W. Herr M. Cornelius P. Stromberger T. Sternke C. Grzeschik et al. Collective-mode enhanced matter-wave optics Phys Rev Lett 127 2021PhRvL.127j0401D 10.1103/PhysRevLett.127.100401 100401
N. Gaaloul M. Meister R. Corgier A. Pichery P. Boegel W. Herr et al. A space-based quantum gas laboratory at picokelvin energy scales Nat Commun 13 875 10.1038/s41467-022-35274-6
R. Roy A. Green R. Bowler S. Gupta Rapid cooling to quantum degeneracy in dynamically shaped atom traps Phys Rev A 93 2016PhRvA.93d3403R 10.1103/PhysRevA.93.043403 043403
S. Inouye M.R. Andrews J. Stenger H.-J. Miesner D.M. Stamper-Kurn W. Ketterle Observation of Feshbach resonances in a Bose-Einstein condensate Nature 392 151 1998Natur.392.151I 10.1038/32354
G. Salomon L. Fouché P. Wang A. Aspect P. Bouyer T. Bourdel Gray-molasses cooling of 39 k to a high phase-space density Europhys Lett 104 2013EL..10463002S 10.1209/0295-5075/104/63002 63002
C. D’Errico M. Zaccanti M. Fattori G. Roati M. Inguscio G. Modugno et al. Feshbach resonances in ultracold 39K New J Phys 9 223 1355.81157 10.1088/1367-2630/9/7/223
K. Enomoto K. Kasa M. Kitagawa Y. Takahashi Optical Feshbach resonance using the intercombination transition Phys Rev Lett 101 2008PhRvL.101t3201E 10.1103/PhysRevLett.101.203201 203201
M. Yan B.J. DeSalvo B. Ramachandhran H. Pu T.C. Killian Controlling condensate collapse and expansion with an optical Feshbach resonance Phys Rev Lett 110 2013PhRvL.110l3201Y 10.1103/PhysRevLett.110.123201 123201
A. Herbst T. Estrampes H. Albers V. Vollenkemper K. Stolzenberg S. Bode et al. High-flux source system for matter-wave interferometry exploiting tunable interactions Phys Rev Res 6 10.1103/PhysRevResearch.6.013139 013139
S. Pandey H. Mas G. Vasilakis W. von Klitzing Atomtronic matter-wave lensing Phys Rev Lett 126 2021PhRvL.126q0402P 10.1103/PhysRevLett.126.170402 170402
H. Albers R. Corgier A. Herbst A. Rajagopalan C. Schubert C. Vogt et al. All-optical matter-wave lens using time-averaged potentials Commun Phys 5 181 10.1038/s42005-022-00825-2
A. Herbst T. Estrampes H. Albers R. Corgier K. Stolzenberg S. Bode et al. Matter-wave collimation to picokelvin energies with scattering length and potential shape control Commun Phys 7 10.1038/s42005-024-01621-w 132
M. Xin W.S. Leong Z. Chen Y. Wang S.-Y. Lan Fast quantum gas formation via electromagnetically induced transparency cooling Nat Phys 20 1
G. Morigi J. Eschner C.H. Keitel Ground state laser cooling using electromagnetically induced transparency Phys Rev Lett 85 4458 2000PhRvL.85.4458M 10.1103/PhysRevLett.85.4458
C. Huang S. Chai S.-Y. Lan Dark-state sideband cooling in an atomic ensemble Phys Rev A 103 2021PhRvA.103a3305H 1466.37062 10.1103/PhysRevA.103.013305 013305
M. Kitagawa M. Ueda Squeezed spin states Phys Rev A 47 5138 1993PhRvA.47.5138K 0255.92003 10.1103/PhysRevA.47.5138
O. Hosten N.J. Engelsen R. Krishnakumar M.A. Kasevich Measurement noise 100 times lower than the quantum-projection limit using entangled atoms Nature 529 505 2016Natur.529.505H 1355.81161 10.1038/nature16176
K.C. Cox G.P. Greve J.M. Weiner J.K. Thompson Deterministic squeezed states with collective measurements and feedback Phys Rev Lett 116 2016PhRvL.116i3602C 10.1103/PhysRevLett.116.093602 093602
M.-Z. Huang J.A. de la Paz T. Mazzoni K. Ott P. Rosenbusch A. Sinatra et al. Observing spin-squeezed states under spin-exchange collisions for a second PRX Quantum 4 2023PRXQ..4b0322H 10.1103/PRXQuantum.4.020322 020322
S.S. Szigeti O. Hosten S.A. Haine Improving cold-atom sensors with quantum entanglement: prospects and challenges Appl Phys Lett 118 2021ApPhL.118n0501S 1476.55023 10.1063/5.0050235 140501
B.K. Malia Y. Wu J. Martínez-Rincón M.A. Kasevich Distributed quantum sensing with mode-entangled spin-squeezed atomic states Nature 612 661 2022Natur.612.661M 10.1038/s41586-022-05363-z
G.P. Greve C. Luo B. Wu J.K. Thompson Entanglement-enhanced matter-wave interferometry in a high-finesse cavity Nature 610 472 2022Natur.610.472G 10.1038/s41586-022-05197-9
Cassens C, Meyer-Hoppe B, Rasel E, Klempt C. An entanglement-enhanced atomic gravimeter. 2024. arXiv: 2404.18668.
Y. Wu R. Krishnakumar J. Martínez-Rincón B.K. Malia O. Hosten M.A. Kasevich Retrieval of cavity-generated atomic spin squeezing after free-space release Phys Rev A 102 2020PhRvA.102a2224W 10.1103/PhysRevA.102.012224 012224
B.K. Malia J. Martínez-Rincón Y. Wu O. Hosten M.A. Kasevich Free space Ramsey spectroscopy in rubidium with noise below the quantum projection limit Phys Rev Lett 125 2020PhRvL.125d3202M 1355.81161 10.1103/PhysRevLett.125.043202 043202
I.D. Leroux M.H. Schleier-Smith V. Vuletić Implementation of cavity squeezing of a collective atomic spin Phys Rev Lett 104 2010PhRvL.104g3602L 1524.81028 10.1103/PhysRevLett.104.073602 073602
Robinson JM, Miklos M, Tso YM, Kennedy CJ, Bothwell T, Kedar D, et al. Direct comparison of two spin squeezed optical clocks below the quantum projection noise limit. 2022. arXiv: 2211.08621.
B. Braverman A. Kawasaki E. Pedrozo-Peñafiel S. Colombo C. Shu Z. Li et al. Near-unitary spin squeezing in 171Yb Phys Rev Lett 122 2019PhRvL.122v3203B 10.1103/PhysRevLett.122.223203 223203
E. Pedrozo-Peñafiel S. Colombo C. Shu A.F. Adiyatullin Z. Li E. Mendez et al. Entanglement on an optical atomic-clock transition Nature 588 414 2020Natur.588.414P 10.1038/s41586-020-3006-1
B. Braverman A. Kawasaki V. Vuletić Impact of non-unitary spin squeezing on atomic clock performance New J Phys 20 1228.05297 10.1088/1367-2630/aae563 103019
R. Hobson W. Bowden A. Vianello I.R. Hill P. Gill Cavity-enhanced non-destructive detection of atoms for an optical lattice clock Opt Express 27 2019OExpr.2737099H 10.1364/OE.27.037099 37099
W. Bowden A. Vianello I.R. Hill M. Schioppo R. Hobson Improving the Q factor of an optical atomic clock using quantum nondemolition measurement Phys Rev X 10 07869189 041052
M.A. Norcia J.K. Thompson Strong coupling on a forbidden transition in strontium and nondestructive atom counting Phys Rev A 93 2016PhRvA.93b3804N 10.1103/PhysRevA.93.023804 023804
L. Pezzè A. Smerzi Heisenberg-limited noisy atomic clock using a hybrid coherent and squeezed state protocol Phys Rev Lett 125 2020PhRvL.125u0503P 4180429 1514.82030 10.1103/PhysRevLett.125.210503 210503
S.S. Szigeti S.P. Nolan J.D. Close S.A. Haine High-precision quantum-enhanced gravimetry with a Bose-Einstein condensate Phys Rev Lett 125 2020PhRvL.125j0402S 10.1103/PhysRevLett.125.100402 100402
R. Corgier N. Gaaloul A. Smerzi L. Pezzè Delta-kick squeezing Phys Rev Lett 127 2021PhRvL.127r3401C 10.1103/PhysRevLett.127.183401 183401
F. Anders A. Idel P. Feldmann D. Bondarenko S. Loriani K. Lange et al. Momentum entanglement for atom interferometry Phys Rev Lett 127 2021PhRvL.127n0402A 10.1103/PhysRevLett.127.140402 140402
R. Corgier L. Pezzè A. Smerzi Nonlinear Bragg interferometer with a trapped Bose-Einstein condensate Phys Rev A 103 2021PhRvA.103f1301C 1514.82030 10.1103/PhysRevA.103.L061301 L061301
S. Hartmann J. Jenewein E. Giese S. Abend A. Roura E.M. Rasel et al. Regimes of atomic diffraction: Raman versus Bragg diffraction in retroreflective geometries Phys Rev A 101 2020PhRvA.101e3610H 10.1103/PhysRevA.101.053610 053610
U.V. Poulsen K. Mølmer Quantum beam splitter for atoms Phys Rev A 65 2002PhRvA.65c3613P 0947.81504 10.1103/PhysRevA.65.033613 033613
A. Burchianti C. D’Errico L. Marconi F. Minardi C. Fort M. Modugno Effect of interactions in the interference pattern of Bose-Einstein condensates Phys Rev A 102 2020PhRvA.102d3314B 10.1103/PhysRevA.102.043314 043314
E. Davis G. Bentsen M. Schleier-Smith Approaching the Heisenberg limit without single-particle detection Phys Rev Lett 116 2016PhRvL.116e3601D 1500.43005 10.1103/PhysRevLett.116.053601 053601
O. Hosten R. Krishnakumar N.J. Engelsen M.A. Kasevich Quantum phase magnification Science 352 1552 2016Sci..352.1552H 3526369 1355.81161 10.1126/science.aaf3397
R. Corgier M. Malitesta A. Smerzi L. Pezzè Quantum-enhanced differential atom interferometers and clocks with spin-squeezing swapping Quantum 7 965 08009394 10.22331/q-2023-03-30-965
Feldmann P, Anders F, Idel A, Schubert C, Schlippert D, Santos L, et al. Optimal squeezing for high-precision atom interferometers. 2023. arXiv: 2311.10241.
Lezeik A, Tell D, Zipfel K, Gupta V, Wodey É, Rasel E, et al. Understanding the gravitational and magnetic environment of a very long baseline atom interferometer. arXiv: 2209.08886.
C. Lotz T. Froböse A. Wanner L. Overmeyer W. Ertmer Einstein-Elevator: a new facility for research from μ to 5 Gravit Space Res 5 11 10.2478/gsr-2017-0007
D.S. Weiss B.C. Young S. Chu Precision measurement of h/m Cs based on photon recoil using laser-cooled atoms and atomic interferometry Appl Phys B, Lasers Opt 59 217 1994ApPhB.59.217W 0133.02202 10.1007/BF01081393
S. Bade L. Djadaojee M. Andia P. Cladé S. Guellati-Khelifa Observation of extra photon recoil in a distorted optical field Phys Rev Lett 121 2018PhRvL.121g3603B 10.1103/PhysRevLett.121.073603 073603
Carrez C. Étude de l’effet des distorsions du front d’onde dans un interféromètre atomique avec un condensat de Bose-Einstein. Ph.D. thesis. Sorbonne Universtité; 2023.
S.-Y. Lan P.-C. Kuan B. Estey P. Haslinger H. Müller Influence of the Coriolis force in atom interferometry Phys Rev Lett 108 2012PhRvL.108i0402L 1249.65276 10.1103/PhysRevLett.108.090402 090402
B. Dubetsky M.A. Kasevich Atom interferometer as a selective sensor of rotation or gravity Phys Rev A 74 1057.78003 10.1103/PhysRevA.74.023615 531
Wang Y, Glick J, Deshpande T, DeRose K, Saraf S, Sachdeva N, et al. Robust quantum control via multipath interference for thousandfold phase amplification in a resonant atom interferometer. 2024. arXiv: 2407.11246.
J. Glick Z. Chen T. Deshpande Y. Wang T. Kovachy Coriolis force compensation and laser beam delivery for 100-m baseline atom interferometry AVS Quantum Sci 6 07868951 10.1116/5.0180083 014402
M.A. Norcia J.R.K. Cline J.K. Thompson Role of atoms in atomic gravitational-wave detectors Phys Rev A 96 2017PhRvA.96d2118N 10.1103/PhysRevA.96.042118 042118
W. Chaibi R. Geiger B. Canuel A. Bertoldi A. Landragin P. Bouyer Low frequency gravitational wave detection with ground-based atom interferometer arrays Phys Rev D 93 10.1103/PhysRevD.93.021101 173
F. Di Pumpo A. Friedrich E. Giese Optimal baseline exploitation in vertical dark-matter detectors based on atom interferometry AVS Quantum Sci 6 10.1116/5.0175683 014404
A. Arvanitaki J. Huang K. Van Tilburg Searching for dilaton dark matter with atomic clocks Phys Rev D 91 2015PhRvD.91a5015A 10.1103/PhysRevD.91.015015 015015
P.W. Graham D.E. Kaplan J. Mardon S. Rajendran W.A. Terrano Dark matter direct detection with accelerometers Phys Rev D 93 10.1103/PhysRevD.93.075029 252
D. Derr E. Giese Clock transitions versus Bragg diffraction in atom-interferometric dark-matter detection AVS Quantum Sci 5 2023AVSQS..5d4404D 1536.26004 10.1116/5.0176666 044404
F. Di Pumpo A. Friedrich A. Geyer C. Ufrecht E. Giese Light propagation and atom interferometry in gravity and dilaton fields Phys Rev D 105 4423771 10.1103/PhysRevD.105.084065 411
P.W. Graham J.M. Hogan M.A. Kasevich S. Rajendran Resonant mode for gravitational wave detectors based on atom interferometry Phys Rev D 94 2016PhRvD.94j4022G 10.1103/PhysRevD.94.104022 104022
C. Misner K. Thorne J. Wheeler Gravitation Princeton Princeton University Press 1375.83002
S. Kleinert E. Kajari A. Roura W.P. Schleich Representation-free description of light-pulse atom interferometry including non-inertial effects Phys Rep 605 1 2015PhR..605..1K 3428317 1357.81174 10.1016/j.physrep.2015.09.004
G. D’Amico G. Rosi S. Zhan L. Cacciapuoti M. Fattori G. Tino Canceling the gravity gradient phase shift in atom interferometry Phys Rev Lett 119 2017PhRvL.119y3201D 10.1103/PhysRevLett.119.253201 253201
A. Roura Circumventing Heisenberg’s uncertainty principle in atom interferometry tests of the equivalence principle Phys Rev Lett 118 2017PhRvL.118p0401R 3686959 0947.68166 10.1103/PhysRevLett.118.160401 160401
J. Junca A. Bertoldi D. Sabulsky G. Lefèvre X. Zou J.-B. Decitre et al. Characterizing Earth gravity field fluctuations with the MIGA antenna for future gravitational wave detectors Phys Rev D 99 4007950 10.1103/PhysRevD.99.104026 3
J. Mitchell T. Kovachy S. Hahn P. Adamson S. Chattopadhyay MAGIS-100 environmental characterization and noise analysis J Instrum 17 10.1088/1748-0221/17/01/P01007 P01007
Schubert C, Schlippert D, Abend S, Giese E, Roura A, Schleich WP, et al. Scalable, symmetric atom interferometer for infrasound gravitational wave detection. 2019. arXiv: 1909.01951.
C.A. Weidner H. Yu R. Kosloff D.Z. Anderson Atom interferometry using a shaken optical lattice Phys Rev A 95 2017PhRvA.95d3624W 1368.37009 10.1103/PhysRevA.95.043624 043624
C.A. Weidner D.Z. Anderson Simplified landscapes for optimization of shaken lattice interferometry New J Phys 20 1392.90103 10.1088/1367-2630/aad36c 075007
Weidner CA. Shaken lattice interferometry. Ph.D. thesis. Boulder: University of Colorado; 2018.
C.A. Weidner D.Z. Anderson Experimental demonstration of shaken-lattice interferometry Phys Rev Lett 120 2018PhRvL.120z3201W 1392.90103 10.1103/PhysRevLett.120.263201 263201
N. Dupont G. Chatelain L. Gabardos M. Arnal J. Billy B. Peaudecerf et al. Quantum state control of a Bose-Einstein condensate in an optical lattice PRX Quantum 2 2021PRXQ..2d0303D 1510.81164 10.1103/PRXQuantum.2.040303 040303
L.-Y. Chih M. Holland Reinforcement-learning-based matter-wave interferometer in a shaken optical lattice Phys Rev Res 3 07899158 10.1103/PhysRevResearch.3.033279 033279
LeDesma C, Mehling K, Shao J, Wilson JD, Axelrad P, Nicotra MM, et al. A machine-designed optical lattice atom interferometer. 2023. arXiv: 2305.17603.
LeDesma C, Mehling K, Holland M. Vector atom accelerometry in an optical lattice. 2024. arXiv: 2407.04874.
Updated schedule for CERN’s accelerators. https://hilumilhc.web.cern.ch/article/updated-schedule-cerns-accelerators.
K.T. Lesko The Sanford Underground Research Facility at Homestake (SURF) Phys Proc 61 542 2015PhPro.61.542L 1370.70043 10.1016/j.phpro.2014.12.001
Interdisciplinary and International Deep Underground Science, Engineering and Technology Laboratories, vol. All Days of ISRM SINOROCK, May. 2009. https://onepetro.org/ISRMSINOROCK/proceedings-pdf/SINOROCK09/All-SINOROCK09/ISRM-SINOROCK-2009-172/1780316/isrm-sinorock-2009-172.pdf.
J. Joutsenvaara M. Holma O. Kotavaara H.J. Puputti Callio Lab – the deep underground research centre in Finland, Europe J Phys Conf Ser 2156 10.1088/1742-6596/2156/1/012166 012166
A. Murphy S. Paling The Boulby mine underground science facility: the search for dark matter, and beyond Nucl Phys News 22 1 19 2012NPNew.22..19M 10.1080/10619127.2011.629920
A. Ianni Canfranc Underground Laboratory J Phys Conf Ser 718 10.1088/1742-6596/718/4/042030 042030
M.G. Beker J.F.J. van den Brand E. Hennes D.S. Rabeling Newtonian noise and ambient ground motion for gravitational wave detectors J Phys Conf Ser 363 10.1088/1742-6596/363/1/012004 012004
Beecroft building University of Oxford. https://www.hawkinsbrown.com/projects/beecroft-building-university-of-oxford.
J. Carlton C. McCabe Mitigating anthropogenic and synanthropic noise in atom interferometer searches for ultralight dark matter Phys Rev D 108 2023PhRvD.108l3004C 10.1103/PhysRevD.108.123004 123004 arXiv:2308.10731
C.J. Bordé M. Weitz T.W. Hänsch New optical atomic interferometers for precise measurements of recoil shifts. Application to atomic hydrogen AIP Conf Proc 290 76 1993AIPC.290..76B 0876.47051 10.1063/1.45083
Schelfhout JS, Hird TM, Hughes KM, Foot CJ. A single-photon large-momentum-transfer atom interferometry scheme for Sr or Yb atoms with application to determining the fine-structure constant. 2024. arXiv preprint. arXiv: 2403.10225.
C.J. Bordé C. Salomon S. Avrillier A. van Lerberghe C. Bréant D. Bassi et al. Optical Ramsey fringes with traveling waves Phys Rev A 30 1836 1984PhRvA.30.1836B 10.1103/PhysRevA.30.1836
C. Bordé Atomic interferometry with internal state labelling Phys Lett A 140 10 1989PhLA.140..10B 1053.83503 10.1016/0375-9601(89)90537-9
R.H. Parker C. Yu W. Zhong B. Estey H. Müller Measurement of the fine-structure constant as a test of the standard model Science 360 191 2018Sci..360.191P 3792640 1416.81019 10.1126/science.aap7706
W. Zhong R.H. Parker Z. Pagel C. Yu H. Müller Offset simultaneous conjugate atom interferometers Phys Rev A 101 2020PhRvA.101e3622Z 10.1103/PhysRevA.101.053622 053622
C. Solaro C. Debavelaere P. Cladé S. Guellati-Khelifa Atom interferometer driven by a picosecond frequency comb Phys Rev Lett 129 2022PhRvL.129q3204S 10.1103/PhysRevLett.129.173204 173204
C. Debavelaere C. Solaro S. Guellati-Khélifa P. Cladé Atom interferometer using spatially localized beam splitters Phys Rev A 110 10.1103/PhysRevA.110.013310 013310