[en] BACKGROUND AND AIMS: Inflammatory bowel disease (IBD) is associated with a higher risk of developing colorectal cancer, according to the inflammation-dysplasia-cancer (IDC) sequence from inflammation to colitis-associated colorectal cancer (CAC). The objective of this study was to identify and generate a transcriptomic signature and score, related to the IDC sequence, that could ultimately classify dysplasia and cancer in IBD. METHODS: Demographics, clinical parameters, histological characteristics, and RNA-sequencing data were evaluated on 134 formalin-fixed paraffin-embedded lesions from 2 independent cohorts of IBD patients with low- or high-grade dysplasia (LGD, HGD) and/or CAC. An ordinal logistic regression screened for significant IDC sequence-associated genes that were computed in a transcriptomic signature score. RESULTS: Principal component analysis and unsupervised clustering on 1% of the most variable genes showed a good clustering between the 4 lesion groups (Normal Mucosa, Inflamed Mucosa, LGD/HGD, and CAC). A gene signature was identified on 27 genes that correlated with the lesion groups in the exploratory cohort. The most weighted gene in this transcriptomic signature was the long non-coding regulatory RNA KCNQ1OT1, a gatekeeper against genomic instability and transposon activation. Based on the expression of these 27 genes, we built and validated a transcriptomic signature score to classify dysplasia and CAC. The overall accuracy of the transcriptomic signature score was 85.71% in the exploratory cohort and 90.91% in the validation cohort. CONCLUSION: We identified a tissue-based transcriptomic score to classify IDC lesions in IBD patients and uncovered some of the pivotal genes in carcinogenesis related to inflammation in IBD.
Disciplines :
Gastroenterology & hepatology
Author, co-author :
Cremer, Anneline; Department of Gastroenterology, HUB Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium. ; Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium.
Rosewick, Nicolas; Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium.
Kelsey, Maxfield; Center on the Biology of Aging, and the Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States.
Trépo, Eric; Department of Gastroenterology, HUB Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium. ; Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium.
Libert, Frédérick; Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium.
De Vos, Martine; Department of Gastroenterology, University Hospital Ghent, Ghent, Belgium.
Baert, Filip; Department of Gastroenterology, AZ Delta, Roeselare, Belgium.
Moreels, Tom; Department of Gastroenterology, University Hospital Antwerp, Edegem, Belgium.
Louis, Edouard ; Université de Liège - ULiège > Département des sciences cliniques > Hépato-gastroentérologie
Rahier, Jean-François; Department of Gastroenterology, CHU UCL Namur site Mont-Godinne, Université Catholique de Louvain, Yvoir, Belgium.
Demetter, Pieter; Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium.
Sedivy, John M; Center on the Biology of Aging, and the Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States.
Vermeire, Séverine ; Department of Gastroenterology, University Hospital Leuven, Leuven, Belgium.
Franchimont, Denis; Department of Gastroenterology, HUB Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium. ; Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium.
A transcriptomic score to classify the inflammation-dysplasia-cancer sequence lesions in inflammatory bowel disease.
Publication date :
05 March 2025
Journal title :
Journal of Crohn's and Colitis
ISSN :
1873-9946
eISSN :
1876-4479
Publisher :
Oxford University Press, Oxford, Gb
Volume :
19
Issue :
3
Peer reviewed :
Peer Reviewed verified by ORBi
Funding number :
Research Foundation against Cancer-Belgium/; Erasme Foundation/; R01 AG016694/AG/NIA NIH HHS/United States; Televie/; P01 AG051449/NH/NIH HHS/United States
Rutter M, Saunders B, Wilkinson K, et al. Severity of inflammation is a risk factor for colorectal neoplasia in ulcerative colitis. Gastroenterology. 2004;126:451–459. doi:10.1053/j.gastro.2003.11.010
Shah SC, Itzkowitz SH. Colorectal cancer in inflammatory bowel disease: mechanisms and management. Gastroenterology. 2022;162:715–730.e3. doi:10.1053/j.gastro.2021.10.035
Itzkowitz SHI, Cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. AJP Gastrointest Liver Physiol. 2004;287:G7–17. doi:10.1152/ajpgi.00079.2004
Rajamäki K, Taira A, Katainen R, et al. Genetic and epigenetic characteristics of inflammatory bowel disease–associated colorectal cancer. Gastroenterology. 2021;161:592–607. doi:10.1053/j. gastro.2021.04.042
Baker AM, Cross W, Curtius K, et al. Evolutionary history of human colitis-associated colorectal cancer. Gut. 2019;68:985–995. doi:10.1136/gutjnl-2018-316191
Chatila WK, Walch H, Hechtman JF, et al. Integrated clinical and genomic analysis identifies driver events and molecular evolution of colitis-associated cancers. Nat Commun. 2023;14:110. doi:10.1038/s41467-022-35592-9
Yaeger R, Shah MA, Miller VA, et al. Genomic alterations observed in colitis-associated cancers are distinct from those found in sporadic colorectal cancers and vary by type of inflammatory bowel disease. Gastroenterology. 2016;151:278–287.e6. doi:10.1053/j. gastro.2016.04.001
Du L, Kim JJ, Shen J, Chen B, Dai N. KRAS and TP53 mutations in inflammatory bowel disease associated colorectal cancer: a meta-analysis. Oncotarget. 2017;8:22175–22186. doi:10.18632/ oncotarget.14549
Chatila WK, Walch HS, Benhamida J, et al. Genomic alterations in colitis-associated cancers in comparison to those found in sporadic colorectal cancer and present in precancerous dysplasia. J Clin Oncol. 2020;38:191–191. doi:10.1200/jco.2020.38.4_suppl.191
Smillie CS, Biton M, Ordovas-Montanes J, et al. Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell. 2019;178:714–730.e22. doi:10.1016/j.cell.2019.06.029
Chatila WK, Walch H, Hechtman JF, et al. Integrated clinical and genomic analysis identifies driver events and molecular evolution of colitis-associated cancers. Nat Commun. 2023;14:1–13. doi:10.1038/s41467-022-35592-9
Guinney J, Dienstmann R, Wang X, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21:1350–1356. doi:10.1038/nm.3967
Cremer A, Demetter P, De Vos M, et al.; Belgian Inflammatory Bowel Disease Research and Development (BIRD) Group. Risk of development of more-advanced lesions in patients with inflammatory bowel diseases and Dysplasia. Clin Gastroenterol Hepatol. 2020;18:1528–1536.e5. doi:10.1016/j.cgh.2019.05.062
Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi:10.1093/bioinformatics/bts635
Liao Y, Smyth GK, Shi WF. An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–930. doi:10.1093/bioinformatics/btt656
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi:10.1186/s13059-014-0550-8
Colaprico A, Silva TC, Olsen C, et al. TCGAbiolinks: an R/ Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016;44:e71. doi:10.1093/nar/gkv1507
Zhang X, Jiang Q, Li J, et al. KCNQ1OT1 promotes genome-wide transposon repression by guiding RNA–DNA triplexes and HP1 binding. Nat Cell Biol. 2022;24:1617–1629. doi:10.1038/s41556-022-01008-5
Xia F, Wang Y, Xue M, et al. LncRNA KCNQ1OT1: molecular mechanisms and pathogenic roles in human diseases. Genes Dis. 2022;9:1556–1565. doi:10.1016/j.gendis.2021.07.003
Ewing AD, Gacita A, Wood LD, et al. Widespread somatic L1 retrotransposition occurs early during gastrointestinal cancer evolution. Genome Res. 2015;25:1536–1545. doi:10.1101/ gr.196238.115
Rodriguez-Martin B, Alvarez EG, Baez-Ortega A, et al.; PCAWG Structural Variation Working Group. Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nat Genet. 2020;52:306–319. doi:10.1038/ s41588-019-0562-0
Russ E, Mikhalkevich N, Iordanskiy S. Expression of human endogenous retrovirus Group K (HERV-K) HML-2 correlates with immune activation of macrophages and type I interferon response. Microbiol Spectr. 2023;11:e0443822. doi:10.1128/spectrum. 04438-22
De Cecco M, Ito T, Petrashen AP, et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature. 2019;566:73–78. doi:10.1038/s41586-018-0784-9
Motwani M, Pesiridis S, Fitzgerald KA. DNA sensing by the cGAS–STING pathway in health and disease. Nat Rev Genet. 2019;20:657–674. doi:10.1038/s41576-019-0151-1
Luo Y, Hitz BC, Gabdank I, et al. New developments on the encyclopedia of DNA elements (ENCODE) data portal. Nucleic Acids Res. 2020;48:D882–D889. doi:10.1093/nar/gkz1062
Zhang J, Tsoi H, Li X, et al. Carbonic anhydrase IV inhibits colon cancer development by inhibiting the Wnt signalling pathway through targeting the WTAP-WT1-TBL1 axis. Gut. 2016;65:1482–1493. doi:10.1136/gutjnl-2014-308614
Chen E, Yang F, He H, et al. Alteration of tumor suppressor BMP5 in sporadic colorectal cancer: a genomic and transcriptomic profiling based study. Mol Cancer. 2018;17:176. doi:10.1186/s12943-018-0925-7
Zabana Y, Lorén V, Domènech E, et al. Transcriptomic identification of TMIGD1 and its relationship with the ileal epithelial cell differentiation in Crohn’s disease. Am J Physiol Gastrointest Liver Physiol. 2020;319:G109–G120. doi:10.1152/ajpgi.00027.2020
Mees ST, Mennigen R, Spieker T, et al. Expression of tight and adherens junction proteins in ulcerative colitis associated colorectal carcinoma: upregulation of claudin-1, claudin-3, claudin-4, and β-catenin. Int J Colorectal Dis. 2009;24:361–368. doi:10.1007/ s00384-009-0653-y
Jiang L, Wang P, Su M, Yang L, Wang Q. Identification of mRNA signature for predicting prognosis risk of rectal adenocarcinoma. Front Genet. 2022;13:880945. doi:10.3389/fgene.2022.880945
Skytthe MK, Graversen JH, Moestrup SK. Targeting of cd163+ macrophages in inflammatory and malignant diseases. Int J Mol Sci. 2020;21:5497–5431. doi:10.3390/ijms21155497
Zheng C, Li J, Chen H, et al. Dual role of CD177 + neutrophils in inflammatory bowel disease: a review. J Transl Med. 2024;22:1–13. doi:10.1186/s12967-024-05539-3
Tolhurst G, Heffron H, Lam YS, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 2012;61:364–371. doi:10.2337/db11-1019
Du M, Zhou W, Beatty LG, Weksberg R, Sadowski PD. The KCNQ1OT1 promoter, a key regulator of genomic imprinting in human chromosome 11p15.5. Genomics. 2004;84:288–300. doi:10.1016/j.ygeno.2004.03.008
Eggermann T, Elbracht M, Schröder C, et al. Congenital imprinting disorders: a novel mechanism linking seemingly unrelated disorders. J Pediatr. 2013;163:1202–1207. doi:10.1016/j.jpeds.2013.05.017
Gorgoulis V, Adams PD, Alimonti A, et al. Cellular senescence: defining a path forward. Cell. 2019;179:813–827. doi:10.1016/j. cell.2019.10.005
Solyom S, Ewing AD, Rahrmann EP, et al. Extensive somatic L1 retrotransposition in colorectal tumors. Genome Res. 2012;22:2328–2338. doi:10.1101/gr.145235.112
McKerrow W, Wang X, Mendez-Dorantes C, et al. LINE-1 expression in cancer correlates with p53 mutation, copy number alteration, and S phase checkpoint. Proc Natl Acad Sci U S A. 2022;119:e2115999119. doi:10.1073/pnas.2115999119
Mboge MY, Mahon BP, McKenna R, Frost SC. Carbonic anhydrases: role in pH control and cancer. Metabolites. 2018;8:19. doi:10.3390/metabo8010019
O’Shea NR, Chew TS, Dunne J, et al. Critical role of the disintegrin metalloprotease ADAM-like DECysin-1 [ADAMDEC1] for intestinal immunity and inflammation. J Crohn’s Colitis. 2016;10:1417–1427. doi:10.1093/ecco-jcc/jjw111
Koo JY, Parekh D, Townsend CM, et al. Amiloride inhibits the growth of human colon cancer cells in vitro. Surg Oncol. 1992;1:385–389. doi:10.1016/0960-7404(92)90040-R
Tenenbaum A, Grossman E, Fisman EZ, et al. Long-term diuretic therapy in patients with coronary disease: increased colon cancer-related mortality over a 5-year follow-up. J Hum Hypertens. 2001;15:373–379. doi:10.1038/sj.jhh.1001192
Porter RJ, Arends MJ, Churchhouse AMD, Din S. Inflammatory bowel disease-associated colorectal cancer: translational risks from mechanisms to medicines. J Crohns Colitis. 2021;15:2131–2141. doi:10.1093/ecco-jcc/jjab102
Nardone OM, Zammarchi I, Santacroce G, Ghosh S, Iacucci M. Inflammation-driven colorectal cancer associated with colitis: from pathogenesis to changing therapy. Cancers (Basel). 2023;15:2389. doi:10.3390/cancers15082389