[en] Bovine trypanosomosis caused by Trypanosoma vivax is a health problem of economic importance in South America. In Ecuador, the presence of T. vivax was first reported in 2018; however, the isolates found in Ecuador are still being studied, mainly on issues related to virulence, pathogenicity, and immune response. To this end, this study aimed to evaluate the cellular and humoral adaptive immune response in vivo in experimentally infected cattle with T. vivax. The study lasted 42 days (with samples collected twice weekly) and was conducted in two cattle experimentally infected with an isolate of T. vivax circulating in Ecuador (TvET1) and two uninfected cattle as controls. Parasitemia was determined by the Brener method and relative gene expression (RGE) of six cytokines was evaluated by RT-qPCR to determine the Th1 response (IFN-γ, TNF-α, IL-1β, IL-12) and the Th2 response (IL-4 and IL-10). Additionally, the total IgG and the IgG1 (Th2) and IgG2 (Th1) subclasses levels were measured using an in-house iELISA. During the study, the animals exhibited four parasitemia peaks concomitant with the cytokines IFN-γ and IL-10. These cytokines, like TNF-α, showed a significant RGE increase (p < 0.05) in infected animals. The presence of total IgG, IgG1 and IgG2 was significant (p < 0.05) in infected animals, and presented a solid monotonic relationship over time. The predominant immunoglobulin subclass was IgG1, and we found that this response was similar to the total IgG. The present study allowed us to highlight the Th response of cattle to T. vivax infection, which is polarized into both a Th1 and a Th2 response. This information contributes to understanding the host-pathogen interaction with strains circulating in Ecuador. The thoroughness of our study can provide the needed knowledge to develop new diagnostic tests and even possible alternatives for vaccine development.
Disciplines :
Veterinary medicine & animal health
Author, co-author :
Cholota-Iza, Cristina; Maestría en Biomedicina, Facultad de Ciencias de la Salud, Universidad Internacional SEK, Quito, Pichincha, Ecuador ; Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y de la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
Torres-Arias, Marbel; Maestría en Biomedicina, Facultad de Ciencias de la Salud, Universidad Internacional SEK, Quito, Pichincha, Ecuador ; Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y de la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
Chavez Larrea, María Augusta ; Université de Liège - ULiège > Université de Liège - ULiège ; Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y de la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
Bedoya-Paez, Fausto; Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y de la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
Cisneros-Ruiz, Mishell; Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera de Ingeniería Agropecuaria, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
Morales-Moreno, Georgina; Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera de Ingeniería Agropecuaria, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
Ron-Román, Jorge; Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera de Ingeniería Agropecuaria, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
Saegerman, Claude ; Université de Liège - ULiège > Département des maladies infectieuses et parasitaires (DMI) > Epidémiologie et analyse des risques appliqués aux sciences vétérinaires
Reyna-Bello, Armando ; Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y de la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
Language :
English
Title :
Trypanosoma vivax elicits both Th1 and Th2 immunological responses in experimentally infected cattle.
ARES - Académie de Recherche et d'Enseignement Supérieur
Funding text :
Funding: This work was supported by the Academy of Research and Higher Education (ARES, Belgium) through the Research forThis work was supported by the Academy of Research and Higher Education (ARES, Belgium) through the Research for Development Project entitled \u201CEstablishment of a Platform to support training and awareness, diagnosis and development of a control strategy for brucellosis and trypanosomoses in Ecuador (acronym: BruTryp). We want to thank the Universidad de las Fuerzas Armadas ESPE for their assistance in carrying out the experimental infections and for providing us with space in their laboratories for this work.
Fetene E, Leta S, Regassa F, Büscher P. Global distribution, host range and prevalence of Trypanosoma vivax: a systematic review and meta-analysis. Parasit Vectors. 2021;14(1):80. https://doi.org/10.1186/s13071-021-04584-x PMID: 33494807
Desquesnes M, Gonzatti M, Sazmand A, Thévenon S, Bossard G, Boulangé A. A review on the diagnosis of animal trypanosomoses. Parasites and Vectors. 2022;15(1):1–24.
Chávez-Larrea MA, Medina-Pozo ML, Cholota-Iza CE, Jumbo-Moreira JR, Saegerman C, Proaño-Pérez F, et al. First report and molecular identification of Trypanosoma (Duttonella) vivax outbreak in cattle population from Ecuador. Transbound Emerg Dis. 2021;68(4):2422–8. https://doi.org/10.1111/tbed.13906 PMID: 33131161
Baldacchino F, Muenworn V, Desquesnes M, Desoli F, Charoenviriyaphap T, Duvallet G. Transmission of pathogens by Stomoxys flies (Diptera, Muscidae): a review. Parasite. 2013;20:26.
Baldacchino F, Desquesnes M, Mihok S, Foil LD, Duvallet G, Jittapalapong S. Tabanids: neglected subjects of research, but important vectors of disease agents! Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases. 2014;28:596–615.
Gonzatti MI, González-Baradat B, Reyna-Bello A. Trypanosoma (Duttonella) vivax and Typanosomosis in Latin America: Secadera/Huequera/ Cacho Hueco. In: Magez S, Radwanska M, editors. Trypanosomes and Trypanosomiasis [Internet]. New York: Springer; 2014. p. 261–9. http://link.springer.com/10.1007/978-3-7091-1556-5
de Melo-Junior RD, Bastos TSA, Couto LFM, Cavalcante AS de A, Zapa DMB, de Morais IML, et al. Trypanosoma vivax in and outside cattle blood: Parasitological, molecular, and serological detection, reservoir tissues, histopathological lesions, and vertical transmission evaluation. Res Vet Sci. 2024;174:105290. https://doi.org/10.1016/j.rvsc.2024.105290 PMID: 38776695
Osório ALAR, Madruga CR, Desquesnes M, Soares CO, Ribeiro LRR, Costa SCG da. Trypanosoma (Duttonella) vivax: its biology, epidemiology, pathogenesis, and introduction in the New World-a review. Mem Inst Oswaldo Cruz. 2008;103(1):1–13. https://doi.org/10.1590/s0074-02762008000100001 PMID: 18368231
Angara TEE, Ismail AA, Ibrahim PM. An Overview on the Economic Impacts of Animal Trypanosomiasis. Global Journal for Research Analysis. 2014;4(7).
Shaw APM, Cecchi G, Wint GRW, Mattioli RC, Robinson TP. Mapping the economic benefits to livestock keepers from intervening against bovine trypanosomosis in Eastern Africa. Prev Vet Med. 2014;113(2):197–210. https://doi.org/10.1016/j.prevetmed.2013.10.024 PMID: 24275205
Radwanska M, Vereecke N, Deleeuw V, Pinto J, Magez S. Salivarian Trypanosomosis: A Review of Parasites Involved, Their Global Distribution and Their Interaction With the Innate and Adaptive Mammalian Host Immune System. Front Immunol. 2018;9:2253. https://doi.org/10.3389/fimmu.2018.02253 PMID: 30333827
Borst P. Antigenic variation and allelic exclusion. Cell. 2002;109(1):5–8.
Magez S, Esteban J, Torres P, Oh S, Radwanska M, Bruschi F. Salivarian Trypanosomes Have Adopted Intricate Host-Pathogen Interaction Mechanisms That Ensure Survival in Plain Sight of the Adaptive Immune System. 2021; https://doi.org/10.3390/pathogens
Manna PT, Kelly S, Field MC. Adaptin evolution in kinetoplastids and emergence of the variant surface glycoprotein coat in African trypanosomatids. Mol Phylogenet Evol. 2013;67(1):123–8. https://doi.org/10.1016/j.ympev.2013.01.002 PMID: 23337175
Bastos TSA, Cruvinel LB, Ferreira LL, Nicaretta JE, Couto LFM, Zapa DMB, et al. Delayed reduction of Anaplasma marginale parasitemia and packed cell volume normalization despite prolonged enrofloxacin treatment of cattle co-infected with Trypanosoma vivax. Parasitol Res. 2021;120(8):2929–37. https://doi.org/10.1007/s00436-021-07226-4 PMID: 34251516
Stranford SA, Owen JA, Punt J, Jones PP, Kuby J. Kuby immunology. 8 ed. New York, NY: Macmillan Learning. 2023.
Abbas A, Lichtman A, Pillai S. Inmunología celular y molecular [Internet]. Elsevier. Barcelona: Elsevier; 2022 [cited 2023 Feb 14]. p. 23–1200. https://clinicalkeymeded.elsevier.com/reader/books/9788413822969/epubcfi/6/22[%3Bvnd.vst.idref%3DCHP003]!/4/2/14/2[sec0007]/6/6[spara012]/7:36[man%2Ca.]
Krueger PD, Goldberg MF, Hong S-W, Osum KC, Langlois RA, Kotov DI, et al. Two sequential activation modules control the differentiation of protective T helper-1 (Th1) cells. Immunity. 2021;54(4):687-701.e4. https://doi.org/10.1016/j.immuni.2021.03.006 PMID: 33773107
Liang H, Tang J, Liu Z, Liu Y, Huang Y, Xu Y, et al. ZIKV infection induces robust Th1-like Tfh cell and long-term protective antibody responses in immunocompetent mice. Nat Commun. 2019;10(1):3859. https://doi.org/10.1038/s41467-019-11754-0 PMID: 31455769
Ratnapriya S, Keerti, Yadav NK, Dube A, Sahasrabuddhe AA. A chimera of Th1 stimulatory proteins of Leishmania donovani offers moderate immunotherapeutic efficacy with a Th1-inclined immune response against visceral leishmaniasis. BioMed Research International. 2021;2021:1–14.
Somé GF, Séré M, Somda BM, Dayo G-K, Ouédraogo GA, Boulangé A, et al. Immune Response in Cattle Trypanosomosis and Trypanotolerance: Main Findings and Gaps. Parasite Immunol. 2024;46(11):e13075. https://doi.org/10.1111/pim.13075 PMID: 39508487
Mabbott NA. The Influence of Parasite Infections on Host Immunity to Co-infection With Other Pathogens. Front Immunol. 2018;9:2579. https://doi.org/10.3389/fimmu.2018.02579 PMID: 30467504
Fidelis Junior OL, Sampaio PH, Gonçalves LR, Machado RZ, André MR, Wijffels G. A Preliminary Study on the Relationship between Parasitaemia and Cytokine Expression of Peripheral Blood Cells in Trypanosoma vivax-Experimentally Infected Cattle. Animals. 2021;11(11):3191. https://doi.org/10.3390/ani11113191
Camejo M, Aso PM, Gonzatti MI, Pérez-Rojas Y. Relación entre infecciones asintomáticas con Anaplasma marginale, Babesia spp. y Trypanosoma vivax en toros y niveles de testosterona. Revista Científica FCV-LUZ. 2015;XXV(6):13–9.
Bakari SM, Ofori JA, Kusi KA, Aning GK, Awandare GA, Carrington M. Serum biochemical parameters and cytokine profiles associated with natural African trypanosome infections in cattle. Parasites and Vectors. 2017;10(1).
Romero-Ramirez A, Casas-Sánchez A, Autheman D, Duffy CW, Brandt C, Clare S, et al. Vivaxin genes encode highly immunogenic, non-variant antigens on the Trypanosoma vivax cell-surface. PLoS Negl Trop Dis. 2022;16(9):e0010791. https://doi.org/10.1371/journal.pntd.0010791 PMID: 36129968
Corripio-Miyar Y, Hayward AD, Lemon H, Bal X, Cunnea C, Kenyon F, et al. T-helper cell phenotypes are repeatable, positively correlated, and associated with helminth infection in wild Soay sheep. Discov Immunol. 2025;4(1):kyae017. https://doi.org/10.1093/discim/kyae017 PMID: 39963298
Kumar S, Tarleton RL. Antigen-specific Th1 but not Th2 cells provide protection from lethal Trypanosoma cruzi infection in mice. The Journal of Immunology. 2001;166(7):4596–603.
Müller U, Piehler D, Stenzel W, Köhler G, Frey O, Held J. Lack of IL-4 receptor expression on T helper cells reduces T helper 2 cell polyfunctionality and confers resistance in allergic bronchopulmonary mycosis. Mucosal Immunology. 2012;5(3):299–310.
McNeilly TN, Nisbet AJ. Immune modulation by helminth parasites of ruminants: implications for vaccine development and host immune competence. Parasite. 2014;21:51. https://doi.org/10.1051/parasite/2014051 PMID: 25292481
Chávez-Larrea MA, Cholota-Iza C, Medina-Naranjo V, Yugcha-Díaz M, Ron-Román J, Martin-Solano S. Detection of Babesia spp. in High Altitude Cattle in Ecuador, Possible Evidence of the Adaptation of Vectors and Diseases to New Climatic Conditions. Pathogens. 2021;10(12). https://pubmed.ncbi.nlm.nih.gov/34959548/
Chávez-Larrea MA, Cholota-Iza C, Cueva-Villavicencio J, Yugcha-Díaz M, Ron-Román JW, Rodríguez-Cabezas A. Molecular identification of Trypanosoma theileri (Laveran, 1902) in cattle from two slaughterhouses in Ecuador and its relation with other haemotropic agents. Frontiers in Veterinary Science. 2023;10:1153069. https://doi.org/10.3389/fvets.2023.1153069
Tana-Hernández L, Navarrete-Arroyo K, Ron-Román J, Reyna-Bello A, Chávez-Larrea MA. PCR-diagnosis of Anaplasma marginale in cattle populations of Ecuador and its molecular identification through sequencing of ribosomal 16S fragments. BMC Vet Res. 2017;13(1):392. https://doi.org/10.1186/s12917-017-1311-1 PMID: 29246225
Brener Z. Contribuição ao estudo da terapêutica experimental da doença de Chagas. Minas Gerais: Universidade Federal de Minas Gerais - UFMG. 1961.
Shah KN, Valand P, Nauriyal DS, Joshi CG. Immunomodulation of IL-1, IL-6 and IL-8 cytokines by Prosopis juliflora alkaloids during bovine sub-clinical mastitis. 3 Biotech. 2018;8(10):409. https://doi.org/10.1007/s13205-018-1438-1 PMID: 30237956
Yang L, Wang Y, Li S, Zhu M, He K, Yao X, et al. Differential expression of interferon-gamma, IL-4 and IL-10 in peripheral blood mononuclear cells during early pregnancy of the bovine. Reprod Biol. 2018;18(3):312–5. https://doi.org/10.1016/j.repbio.2018.06.005 PMID: 29960858
Marin-Flamand E, Araiza-Hernandez DM, Vargas-Ruiz A, Carlos Rangel-Rodríguez I, González-Tapia LA, Ramírez-Álvarez H. Relationship of persistent lymphocytosis, antibody titers, and proviral load with expression of interleukin-12, interferon-g, interleukin-2, interleukin-4, interleukin-10, and transforming growth factor-b in cows infected with bovine leukemia virus from a high-prevalence dairy complex. The Canadian Journal of Veterinary Research. 2022;86:269–85.
Morrison LJ, Vezza L, Rowan T, Hope JC. Animal African Trypanosomiasis: Time to Increase Focus on Clinically Relevant Parasite and Host Species. Trends Parasitol. 2016;32(8):599–607. https://doi.org/10.1016/j.pt.2016.04.012 PMID: 27167665
Parra-Gimenez N, Reyna-Bello A. Parasitological, hematological, and immunological response of experimentally infected sheep with Venezuelan isolates of Trypanosoma evansi, Trypanosoma equiperdum, and Trypanosoma vivax. Journal of Parasitology Research. 2019;2019:1–9.
Ramirez-Barrios R, Reyna-Bello A, Parra O, Valeris R, Tavares-Marques L, Brizard JP. Trypanosoma vivax infection in sheep: different patterns of virulence and pathogenicity associated with differentially expressed proteomes. Vet Parasitol X. 2019;2:null. https://doi.org/null
Horn D. Antigenic variation in African trypanosomes. Mol Biochem Parasitol. 2014;195(2):123–9. https://doi.org/10.1016/j.molbiopara.2014.05.001 PMID: 24859277
Sandhu SK, Morozov AY, Farkas JZ. Modelling evolution of virulence in populations with a distributed parasite load. J Math Biol. 2020;80(1–2):111–41. https://doi.org/10.1007/s00285-019-01351-6 PMID: 30972437
Sorci G, Cornet S, Faivre B. Immunity and the emergence of virulent pathogens. Infect Genet Evol. 2013;16:441–6. https://doi.org/10.1016/j.meegid.2012.12.031 PMID: 23333337
Cornet S, Bichet C, Larcombe S, Faivre B, Sorci G. Impact of host nutritional status on infection dynamics and parasite virulence in a bird-malaria system. J Anim Ecol. 2014;83(1):256–65. https://doi.org/10.1111/1365-2656.12113 PMID: 23926945
Lazzaro BP, Little TJ. Immunity in a variable world. Philosophical Transactions of the Royal Society B. 2009;364(1513):15–26.
Craig BH, Pilkington JG, Pemberton JM. Gastrointestinal nematode species burdens and host mortality in a feral sheep population. Parasitology. 2006;133(Pt 4):485–96. https://doi.org/10.1017/S0031182006000618 PMID: 16817995
Bassi PB, de Araújo FF, Garcia GC, Vinícius da Silva M, Oliveira CJF, Bittar ER, et al. Parasitological and immunological evaluation of cattle experimentally infected with Trypanosoma vivax. Exp Parasitol. 2018;185:98–106. https://doi.org/10.1016/j.exppara.2018.01.010 PMID: 29309784
Bastos TSA, Faria AM, Cavalcante AS de A, Madrid DM de C, Zapa DMB, Nicaretta JE, et al. Infection capacity of Trypanosoma vivax experimentally inoculated through different routes in bovines with latent Anaplasma marginale. Exp Parasitol. 2020;211:107861. https://doi.org/10.1016/j.exppara.2020.107861 PMID: 32112944
Clark R, Kupper T. Old meets new: the interaction between innate and adaptive immunity. J Invest Dermatol. 2005;125(4):629–37. https://doi.org/10.1111/j.0022-202X.2005.23856.x PMID: 16185260
Viana IM de O, Roussel S, Defrêne J, Lima EM, Barabé F, Bertrand N. Innate and adaptive immune responses toward nanomedicines. Acta Pharm Sin B. 2021;11(4):852–70. https://doi.org/10.1016/j.apsb.2021.02.022 PMID: 33747756
Netea MG, Schlitzer A, Placek K, Joosten LAB, Schultze JL. Innate and Adaptive Immune Memory: an Evolutionary Continuum in the Host’s Response to Pathogens. Cell Host Microbe. 2019;25(1):13–26. https://doi.org/10.1016/j.chom.2018.12.006 PMID: 30629914
Pays E, Radwanska M, Magez S. The pathogenesis of African trypanosomiasis. Annu Rev Pathol Mech Dis. 2023;18(1):19–45.
Guerra-Maupome M, Slate JR, McGill JL. Gamma delta T cell function in ruminants. Veterinary Clinics of North America: Food Animal Practice. 2019;35(3):453–69.
Schofield L, McConville MJ, Hansen D, Campbell AS, Fraser-Reid B, Grusby MJ, et al. CD1d-restricted immunoglobulin G formation to GPI-anchored antigens mediated by NKT cells. Science. 1999;283(5399):225–9. https://doi.org/10.1126/science.283.5399.225 PMID: 9880256
Cangiano LR, Lamers K, Olmeda MF, Villot C, Hodgins DC, Mallard BA, et al. Developmental adaptations of γδ T cells and B cells in blood and intestinal mucosa from birth until weaning in Holstein bull calves. J Dairy Sci. 2024;107(3):1734–50. https://doi.org/10.3168/jds.2023-23943 PMID: 37806632
Hein WR, Mackay CR. Prominence of gamma delta T cells in the ruminant immune system. Immunol Today. 1991;12(1):30–4. https://doi.org/10.1016/0167-5699(91)90109-7 PMID: 1826600
Wu H, Liu G, Shi M. Interferon gamma in African trypanosome infections: friends or foes?. Front Immunol. 2017;8:1105.
Taiwo VO, Anosa VO. In vitro erythrophagocytosis by cultured macrophages stimulated with extraneous substances and those isolated from the blood, spleen and bone marrow of Boran and N’Dama cattle infected with Trypanosoma congolense and Trypanosoma vivax. Onderstepoort J Vet Res. 2000;67(4):273–87. PMID: 11206395
Mansfield JM, Paulnock DM. Regulation of innate and acquired immunity in African trypanosomiasis. Parasite Immunol. 2005;27(10–11):361–71. https://doi.org/10.1111/j.1365-3024.2005.00791.x PMID: 16179030
La Greca F, Haynes C, Stijlemans B, De Trez C, Magez S. Antibody-mediated control of Trypanosoma vivax infection fails in the absence of tumour necrosis factor. Parasite Immunol. 2014;36(6):271–6. https://doi.org/10.1111/pim.12106 PMID: 24697754
Magez S, Radwanska M, Beschin A, Sekikawa K, De Baetselier P. Tumor necrosis factor alpha is a key mediator in the regulation of experimental Trypanosoma brucei infections. Infect Immun. 1999;67(6):3128–32. https://doi.org/10.1128/IAI.67.6.3128-3132.1999 PMID: 10338530
Couper KN, Blount DG, Riley EM. IL-10: The Master Regulator of Immunity to Infection. The Journal of Immunology. 2008;180(9):5771–7.
Kato CD, Matovu E, Mugasa CM, Nanteza A, Alibu VP. The role of cytokines in the pathogenesis and staging of Trypanosoma brucei rhodesiense sleeping sickness. Allergy Asthma Clin Immunol. 2016;12:4. https://doi.org/10.1186/s13223-016-0113-5 PMID: 26807135
Jackson AP, Berry A, Aslett M, Allison HC, Burton P, Vavrova-Anderson J, et al. Antigenic diversity is generated by distinct evolutionary mechanisms in African trypanosome species. Proc Natl Acad Sci U S A. 2012;109(9):3416–21. https://doi.org/10.1073/pnas.1117313109 PMID: 22331916
Jackson AP, Allison HC, Barry JD, Field MC, Hertz-Fowler C, Berriman M. A cell-surface phylome for African trypanosomes. PLoS Negl Trop Dis. 2013;7(3):e2121. https://doi.org/10.1371/journal.pntd.0002121 PMID: 23556014
Rudenko G. African trypanosomes: the genome and adaptations for immune evasion. Essays Biochem. 2011;51:47–62. https://doi.org/10.1042/ bse0510047 PMID: 22023441
Tiengwe C, Muratore KA, Bangs JD. Surface proteins, ERAD and antigenic variation in Trypanosoma brucei. Cell Microbiol. 2016;18(11):1673–88. https://doi.org/10.1111/cmi.12605 PMID: 27110662
Silva Pereira S, de Almeida Castilho Neto KJG, Duffy CW, Richards P, Noyes H, Ogugo M. Variant antigen diversity in Trypanosoma vivax is not driven by recombination. Nature Communications. 2020;11(1).
Greif G, Ponce de Leon M, Lamolle G, Rodriguez M, Piñeyro D, Tavares-Marques LM, et al. Transcriptome analysis of the bloodstream stage from the parasite Trypanosoma vivax. BMC Genomics. 2013;14:149. https://doi.org/10.1186/1471-2164-14-149 PMID: 23497072
Stavnezer J. Antibody Class Switching. In: Advances in Immunology [Internet]. Elsevier; 1996 [cited 2024 Sep 8]. p. 79–146. https://linkinghub.elsevier.com/retrieve/pii/S0065277608608664
Schopf LR, Filutowicz H, Bi XJ, Mansfield JM. Interleukin-4-dependent immunoglobulin G1 isotype switch in the presence of a polarized antigen-specific Th1-cell response to the trypanosome variant surface glycoprotein. Infect Immun. 1998;66(2):451–61. https://doi.org/10.1128/IAI.66.2.451461.1998 PMID: 9453595
Mariani L, Schulz EG, Lexberg MH, Helmstetter C, Radbruch A, Löhning M, et al. Short-term memory in gene induction reveals the regulatory principle behind stochastic IL-4 expression. Mol Syst Biol. 2010;6:359. https://doi.org/10.1038/msb.2010.13 PMID: 20393579
Autheman D, Crosnier C, Clare S, Goulding DA, Brandt C, Harcourt K, et al. An invariant Trypanosoma vivax vaccine antigen induces protective immunity. Nature. 2021;595(7865):96–100.
Gonçalves ALR, Silva CV, Ueta MT, Costa-Cruz JM. Antigen, antibody and immune complex detection in serum samples from rats experimentally infected with Strongyloides venezuelensis. Exp Parasitol. 2012;130(3):205–8. https://doi.org/10.1016/j.exppara.2012.01.007 PMID: 22306281
Kindt TJ, Goldsby RA, Osborne BA, Kuby J. Kuby immunology. 6 ed. New York: Freeman. 2007.
Gkeka A, Aresta-Branco F, Triller G, Vlachou EP, van Straaten M, Lilic M, et al. Immunodominant surface epitopes power immune evasion in the African trypanosome. Cell Rep. 2023;42(3):112262. https://doi.org/10.1016/j.celrep.2023.112262 PMID: 36943866
Collins AM. IgG subclass co-expression brings harmony to the quartet model of murine IgG function. Immunol Cell Biol. 2016;94(10):949–54. https://doi.org/10.1038/icb.2016.65 PMID: 27502143
Tolomeo M, Cascio A. STAT4 and STAT6, their role in cellular and humoral immunity and in diverse human diseases. International Reviews of Immunology. 2024:1–25.
Müller U, Stenzel W, Köhler G, Polte T, Blessing M, Mann A, et al. A gene-dosage effect for interleukin-4 receptor alpha-chain expression has an impact on Th2-mediated allergic inflammation during bronchopulmonary mycosis. J Infect Dis. 2008;198(11):1714–21. https://doi.org/10.1086/593068 PMID: 18954266
Snapper CM, Paul WE. Interferon-gamma and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science. 1987;236(4804):944–7. https://doi.org/10.1126/science.3107127 PMID: 3107127
Germann T, Gately MK, Schoenhaut DS, Lohoff M, Mattner F, Fischer S, et al. Interleukin-12/T cell stimulating factor, a cytokine with multiple effects on T helper type 1 (Th1) but not on Th2 cells. Eur J Immunol. 1993;23(8):1762–70. https://doi.org/10.1002/eji.1830230805 PMID: 8102100
Festing MF. On determining sample size in experiments involving laboratory animals. Lab Anim. 2018;52(4):341–50. https://doi.org/10.1177/0023677217738268 PMID: 29310487
Nemoto M, Oue Y, Morita Y, Kanno T, Kinoshita Y, Niwa H, et al. Experimental inoculation of equine coronavirus into Japanese draft horses. Arch Virol. 2014;159(12):3329–34. https://doi.org/10.1007/s00705-014-2205-1 PMID: 25139547
Knappe-Poindecker M, Jørgensen HJ, Jensen TK, Tesfamichael B, Ulvund MJ, Hektoen L. Experimental infection of cattle with ovine Dichelobacter nodosus isolates. Acta Vet Scand. 2015;57(1):55.
Oyesola OO, Souza COS, Loke P. The influence of genetic and environmental factors and their interactions on immune response to helminth infections. Front Immunol. 2022;13:869163. https://doi.org/10.3389/fimmu.2022.869163