[en] Electrospun polycaprolactone (PCL) nanofibrous membranes loaded with 2 2 % w/w polymyxin B (PMB) were developed as biodegradable antimicrobial wound dressings using two different solvent systems: organic (dichloromethane/dimethylformamide, OS) and acidic (acetic acid/formic acid, Acid). The choice of solvent significantly influenced fiber morphology, polymer crystallinity, mechanical properties, and drug-release kinetics. Both membranes exhibited well-defined bead-free nanofibers with diameters in the sub-micron range and porosity > 85 %. PMB release showed a marked initial burst within the first hour (≈ 35-55 % for OS membranes vs. ≈ 20-30 % for Acid membranes), followed by sustained diffusion over 7 days. Agar diffusion tests revealed strong antibacterial activity against Staphylococcus aureus (inhibition zone 1.5 mm for OS-PMB, growth inhibition under the sample for Acid-PMB) and Pseudomonas aeruginosa (5.0 mm and 0.6 mm, respectively), with no bacterial growth under any PMB-loaded samples. All membranes proved non-cytotoxic (> 80 % cell viability). The use of only two FDA-approved components, combined with a simple one-step electrospinning process and tunable release via solvent selection, offers a highly scalable and clinically translatable platform for the local delivery of polymyxin B in infected or at-risk wounds.
Disciplines :
Materials science & engineering Chemical engineering
Author, co-author :
Mahy, Julien ; Université de Liège - ULiège > Chemical engineering
Bernard, Julie; Department of Chemical Engineering -Nanomaterials, Catalysis & Electrochemistry (NCE), University of Liège, Liège, Belgium ; Centexbel, Belgium
Duysens, Guérin ; Centexbel, Belgium
Monteiro, Ana; Centexbel, Belgium
Dutrieux, Stéphane; Centexbel, Belgium
Farcy, Antoine ; Université de Liège - ULiège > Chemical engineering
Riva, Raphaël ; Université de Liège - ULiège > Département de chimie (sciences) > Centre d'études et de recherches sur les macromolécules (CERM)
Jérôme, Christine ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie des macromolécules et des matériaux organiques (CERM)
Jolois, Olivier; Centexbel, Belgium
Tilkin, Rémi ; Université de Liège - ULiège > Department of Chemical Engineering > Nanomaterials, Catalysis, Electrochemistry ; Centexbel, Belgium
Language :
English
Title :
Electrospun polycaprolactone membranes as controlled delivery systems of polymyxin B for wound dressings applications
Ambrogi, V., Pietrella, D., Donnadio, A., Latterini, L., Di Michele, A., Luffarelli, I., Ricci, M., Biocompatible alginate silica supported silver nanoparticles composite films for wound dressing with antibiofilm activity. Mater. Sci. Eng. C., 112, 2020, 10.1016/j.msec.2020.110863.
K.I. DragetAlginates Handb. Hydrocoll2009.
Mo, F., Zhang, M., Duan, X., Lin, C., Sun, D., You, T., Recent Advances in Nanozymes for Bacteria-Infected Wound Therapy. Int. J. Nanomed. 17 (2022), 5947–5990, 10.2147/IJN.S382796.
Hussain, Z., Thu, H.E., Rawas-Qalaji, M., Naseem, M., Khan, S., Sohail, M., Recent developments and advanced strategies for promoting burn wound healing. J. Drug Deliv. Sci. Technol., 68, 2022, 10.1016/j.jddst.2022.103092.
Fan, C., Xu, Q., Hao, R., Wang, C., Que, Y., Chen, Y., Yang, C., Chang, J., Multi-functional wound dressings based on silicate bioactive materials. Biomaterials, 287, 2022, 10.1016/j.biomaterials.2022.121652.
Noor, A., Afzal, A., Masood, R., Khaliq, Z., Ahmad, S., Ahmad, F., Qadir, M.B., Irfan, M., Dressings for burn wound: a review. J. Mater. Sci. 57 (2022), 6536–6572, 10.1007/s10853-022-07056-4.
Alven, S., Peter, S., Mbese, Z., Aderibigbe, B.A., Polymer-Based Wound Dressing Materials Loaded with Bioactive Agents: Potential Materials for the Treatment of Diabetic Wounds. Polymers, 14, 2022, 10.3390/polym14040724.
Liu, X., Xu, H., Zhang, M., Yu, D.G., Electrospun medicated nanofibers for wound healing: Review. Membranes, 11, 2021, 10.3390/membranes11100770.
Varaprasad, K., Jayaramudu, T., Kanikireddy, V., Toro, C., Sadiku, E.R., Alginate-based composite materials for wound dressing application:a mini review. Carbohydr. Polym., 236, 2020, 10.1016/j.carbpol.2020.116025.
Shu, W., Wang, Y., Zhang, X., Li, C., Le, H., Chang, F., Functional hydrogel dressings for treatment of burn wounds. Front Bioeng. Biotechnol., 9, 2021, 10.3389/fbioe.2021.788461.
Islam, M.S., Ang, B.C., Andriyana, A., Afifi, A.M., A review on fabrication of nanofibers via electrospinning and their applications. SN Appl. Sci., 1, 2019, 10.1007/s42452-019-1288-4.
Sun, Y., Cheng, S., Lu, W., Wang, Y., Zhang, P., Yao, Q., Electrospun fibers and their application in drug controlled release, biological dressings, tissue repair, and enzyme immobilization. RSC Adv. 9 (2019), 25712–25729, 10.1039/c9ra05012d.
Wang, P., Lv, H., Cao, X., Liu, Y., Yu, D.G., Recent Progress of the Preparation and Application of Electrospun Porous Nanofibers. Polymers, 15, 2023, 10.3390/polym15040921.
Ou, X., Guo, W., Tian, H., Yu, D., Li, R., Gao, G., Qu, W., Portable direct spraying porous nanofibrous membranes stent-loaded polymyxin B for treating diabetic wounds with difficult-to-heal gram-negative bacterial infections. Mater. Today Bio, 29, 2024, 10.1016/j.mtbio.2024.101365.
Li, Y., Xu, H., Zhao, W., Zhang, L., Wu, S., Electrospun robust, biodegradable, bioactive, and nanostructured sutures to accelerate the chronic wound healing. Biofabrication, 17, 2025, 10.1088/1758-5090/adacaf.
Rahman, M., Kabir, M., Islam, T., Wang, Y., Meng, Q., Liu, H., Chen, S., Wu, S., Curcumin-loaded ZIF-8 nanomaterials: exploring drug loading efficiency and biomedical performance. ACS Omega, 2025, 10.1021/acsomega.4c09945.
Christen, M.O., Vercesi, F., Polycaprolactone: how a well-known and futuristic polymer has become an innovative collagen-stimulator in esthetics. Clin. Cosmet. Invest. Dermatol. 13 (2020), 31–48, 10.2147/CCID.S229054.
Azari, A., Golchin, A., Maymand, M.M., Mansouri, F., Ardeshirylajimi, A., Electrospun polycaprolactone nanofibers: current research and applications in biomedical application. Adv. Pharm. Bull. 12 (2022), 658–672, 10.34172/apb.2022.070.
Afzal, M., Vijay, A.K., Stapleton, F., Willcox, M.D.P., Susceptibility of ocular Staphylococcus aureus to antibiotics and multipurpose disinfecting solutions. Antibiotics, 10, 2021, 10.3390/antibiotics10101203.
Zavascki, A.P., Goldani, L.Z., Li, J., Nation, R.L., Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. J. Antimicrob. Chemother. 60 (2007), 1206–1215, 10.1093/jac/dkm357.
Pant, B., Park, M., Park, S.J., Drug delivery applications of core-sheath nanofibers prepared by coaxial electrospinning: a review. Pharmaceutics, 11, 2019, 10.3390/pharmaceutics11070305.
Ekram, B., Abdel-Hady, B.M., El-Kady, A.M., Amr, S.M., Waley, A.I., Guirguis, O.W., Optimum parameters for the production of nano-scale electrospun polycaprolactone to be used as a biomedical material. Adv. Nat. Sci. Nanosci. Nanotechnol., 8, 2017, 10.1088/2043-6254/aa92b4.
Rajeev, M., Helms, C.C., A study of the relationship between polymer solution entanglement and electrospun PCL fiber mechanics. Polymers, 15, 2023, 10.3390/polym15234555.
Anaya-Mancipe, J.M., de Figueiredo, A.C., Rabello, L.G., Dias, M.L., da Silva Moreira Thiré, R.M., Evaluation of the polycaprolactone hydrolytic degradation in acid solvent and its influence on the electrospinning process. J. Appl. Polym. Sci., 141, 2024, 10.1002/app.55662.
Chinnakorn, A., Soi-Ngoen, Y., Weeranantanapan, O., Pakawanit, P., Maensiri, S., Srisom, K., Janphuang, P., Radacsi, N., Nuansing, W., Fabrication of 3D polycaprolactone macrostructures by 3D electrospinning. ACS Biomater. Sci. Eng. 10 (2024), 5336–5351, 10.1021/acsbiomaterials.4c00302.
Du, L., Xu, H., Zhang, Y., Zou, F., Electrospinning of polycaprolatone nanofibers with DMF additive: the effect of solution proprieties on jet perturbation and fiber morphologies. Fibers Polym. 17 (2016), 751–759, 10.1007/s12221-016-6045-3.
N. Kulpreechanan, T. Bunaprasert, R. RangkupanElectrospinning of polycaprolactone in dichloromethane/dimethylformamide solvent system Adv. Mat. Res.2014, 33734210.4028/www.scientific.net/AMR.849.337.
Fernández-Tena, A., Pérez-Camargo, R.A., Coulembier, O., Sangroniz, L., Aranburu, N., Guerrica-Echevarria, G., Liu, G., Wang, D., Cavallo, D., Müller, A.J., Effect of Molecular Weight on the Crystallization and Melt Memory of Poly(ϵ-caprolactone) (PCL). Macromolecules 56 (2023), 4602–4620, 10.1021/acs.macromol.3c00234.
Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., Protein measurement with the folin phenol reagent. J. Biol. Chem. 193 (1951), 265–275.
Bartnikowski, M., Dargaville, T.R., Ivanovski, S., Hutmacher, D.W., Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment. Prog. Polym. Sci. 96 (2019), 1–20, 10.1016/j.progpolymsci.2019.05.004.
Sailema-Palate, G.P., Vidaurre, A., Campillo, A.F., Castilla-Cortázar, I., A comparative study on Poly(ϵ-caprolactone) film degradation at extreme pH values. Polym. Degrad. Stab. 130 (2016), 118–125, 10.1016/j.polymdegradstab.2016.06.005.
Ero-Phillips, O., Jenkins, M., Stamboulis, A., Tailoring CRystallinity of Electrospun Plla Fibres by Control of Electrospinning Parameters. Polymers 4 (2012), 1331–1348, 10.3390/polym4031331.
Kostakova, E.K., Meszaros, L., Maskova, G., Blazkova, L., Turcsan, T., Lukas, D., Crystallinity of electrospun and centrifugal spun polycaprolactone fibers: a comparative study. J. Nanomater, 2017, 2017, 10.1155/2017/8952390.
Herrera-Kao, W.A., Loría-Bastarrachea, M.I., Pérez-Padilla, Y., Cauich-Rodríguez, J.V., Vázquez-Torres, H., Cervantes-Uc, J.M., Thermal degradation of poly(caprolactone), poly(lactic acid), and poly(hydroxybutyrate) studied by TGA/FTIR and other analytical techniques. Polym. Bull. 75 (2018), 4191–4205, 10.1007/s00289-017-2260-3.
Vogel, C., Siesler, H.W., Thermal degradation of poly(ε-caprolactone), poly(L-lactic acid) and their blends with poly(3-hydroxy-butyrate) studied by TGA/FT-IR spectroscopy, in. Macromol. Symp., 2008, 183–194, 10.1002/masy.200850520.
Persenaire, O., Alexandre, M., Degée, P., Dubois, P., Mechanisms and kinetics of thermal degradation of poly(ε-caprolactone). Biomacromolecules 2 (2001), 288–294, 10.1021/bm0056310.
Can-Herrera, L.A., Oliva, A.I., Dzul-Cervantes, M.A.A., Pacheco-Salazar, O.F., Cervantes-Uc, J.M., Morphological and mechanical properties of electrospun polycaprolactone scaffolds: effect of applied voltage. Polymers 13 (2021), 1–16, 10.3390/polym13040662.
Semitela, Â., Girão, A.F., Fernandes, C., Ramalho, G., Bdikin, I., Completo, A., Marques, P.A.A.P., Electrospinning of bioactive polycaprolactone-gelatin nanofibres with increased pore size for cartilage tissue engineering applications. J. Biomater. Appl. 35 (2020), 471–484, 10.1177/0885328220940194.
Ferreira, J.L., Gomes, S., Henriques, C., Borges, J.P., Silva, J.C., Electrospinning polycaprolactone dissolved in glacial acetic acid: Fiber production, nonwoven characterization, and in Vitro evaluation. J. Appl. Polym. Sci., 131, 2014, 10.1002/app.41068.
Bongiovanni Abel, S., Liverani, L., Boccaccini, A.R., Abraham, G.A., Effect of benign solvents composition on poly(ε-caprolactone) electrospun fiber properties. Mater. Lett. 245 (2019), 86–89, 10.1016/j.matlet.2019.02.107.
Van Der Schueren, L., De Schoenmaker, B., Kalaoglu, Ö.I., De Clerck, K., An alternative solvent system for the steady state electrospinning of polycaprolactone. Eur. Polym. J. 47 (2011), 1256–1263, 10.1016/j.eurpolymj.2011.02.025.
Repanas, A., Wolkers, W.F., Coaxial electrospinning as a process to engineer biodegradable polymeric scaffolds as drug delivery systems for anti-inflammatory and anti- thrombotic pharmaceutical agents. Clin. Exp. Pharm., 05, 2015, 10.4172/2161-1459.1000192.
Bikiaris, N.D., Koumentakou, I., Michailidou, G., Kostoglou, M., Vlachou, M., Barmpalexis, P., Karavas, E., Papageorgiou, G.Z., Investigation of Molecular weight, polymer concentration and process parameters factors on the sustained release of the anti-multiple-sclerosis agent teriflunomide from poly(ε-caprolactone) electrospun nanofibrous matrices. Pharmaceutics, 14, 2022, 10.3390/pharmaceutics14081693.
Zamani, F., Amani Tehran, M., Abbasi, A., Fabrication of PCL nanofibrous scaffold with tuned porosity for neural cell culture. Prog. Biomater. 10 (2021), 151–160, 10.1007/s40204-021-00159-2.
Croisier, F., Duwez, A.S., Jérôme, C., Léonard, A.F., Van Der Werf, K.O., Dijkstra, P.J., Bennink, M.L., Mechanical testing of electrospun PCL fibers. Acta Biomater. 8 (2012), 218–224, 10.1016/j.actbio.2011.08.015.
Berhan, L., Sastry, A.M., On modeling bonds in fused, porous networks: 3D simulations of fibrous-particulate joints. J. Compos Mater. 37 (2003), 715–740, 10.1177/002199803029725.
Nguyen, T.-H., Lee, B.-T., Fabrication and characterization of cross-linked gelatin electro-spun nano-fibers. J. Biomed. Sci. Eng. 03 (2010), 1117–1124, 10.4236/jbise.2010.312145.
Rabiee, T., Yeganeh, H., Gharibi, R., Antimicrobial wound dressings with high mechanical conformability prepared through thiol-yne click photopolymerization reaction. Biomed. Mater. (Bristol), 14, 2019, 10.1088/1748-605X/ab16b8.
Ní Annaidh, A., Bruyère, K., Destrade, M., Gilchrist, M.D., Otténio, M., Characterization of the anisotropic mechanical properties of excised human skin. J. Mech. Behav. Biomed. Mater. 5 (2012), 139–148, 10.1016/j.jmbbm.2011.08.016.
Minsart, M., Van Vlierberghe, S., Dubruel, P., Mignon, A., Commercial wound dressings for the treatment of exuding wounds: an in-depth physico-chemical comparative study. Burns Trauma, 10, 2022, 10.1093/burnst/tkac024.
Yang, Y., Hu, H., Application of superabsorbent spacer fabrics as exuding wound dressing. Polymers, 10, 2018, 10.3390/polym10020210.
Waring, M., Butcher, Martyn, An investigation into the conformability of wound dressings. Wounds UK 7 (2011), 14–24.
Huang, Y., Yuan, Z., Zhao, D., Wang, F., Zhang, K., Li, Y., Wen, Y., Wang, C., Polymyxin B immobilized nanofiber sponge for endotoxin adsorption. Eur. Polym. J. 110 (2019), 69–75, 10.1016/j.eurpolymj.2018.11.008.
Zhang, X., Guo, R., Xu, J., Lan, Y., Jiao, Y., Zhou, C., Zhao, Y., Poly(l-lactide)/halloysite nanotube electrospun mats as dual-drug delivery systems and their therapeutic efficacy in infected full-thickness burns. J. Biomater. Appl. 30 (2015), 512–525, 10.1177/0885328215593837.
Gounani, Z., Pourianejad, S., Asadollahi, M.A., Meyer, R.L., Rosenholm, J.M., Arpanaei, A., Polycaprolactone-gelatin nanofibers incorporated with dual antibiotic-loaded carboxyl-modified silica nanoparticles. J. Mater. Sci. 55 (2020), 17134–17150, 10.1007/s10853-020-05253-7.
Nazemoroaia, M., Bagheri, F., Mirahmadi-Zare, S.Z., Eslami-kaliji, F., Derakhshan, A., Asymmetric natural wound dressing based on porous chitosan-alginate hydrogel/electrospun PCL-silk sericin loaded by 10-HDA for skin wound healing: In vitro and in vivo studies. Int. J. Pharm., 668, 2025, 10.1016/j.ijpharm.2024.124976.
Erdogan, S., Günes, S.N., Bulbul, Y.E., Eskitoros-Togay, M., Dilsiz, N., Design of multi-layer electrospun poly(ε-caprolactone)/chitosan nanofiber scaffolds loaded with tigecycline for controlled drug release and antibacterial wound healing. Int. J. Biol. Macromol., 322, 2025, 10.1016/j.ijbiomac.2025.146955.