Carbon xerogels; CO2 activation; Hard carbon; Na-ion batteries; Carbon layers; Chemical vapour deposition; Initial Coulombic efficiency; Micropores; Negative electrode; Performance; Chemistry (all); Materials Science (all)
Abstract :
[en] A carbon xerogel (CX) with ∼2 μm nodules was synthesized via polycondensation of resorcinol with formaldehyde in water, followed by pyrolysis at 800 °C. The resulting sample underwent surface treatments using Chemical Vapor Deposition (CVD) and/or CO2 activation in order to mask the micropores with a secondary carbon layer or develop additional micropores, respectively. This strategy aimed at understanding the impact of surface modification and closed micropores on the performance of hard carbons as negative electrode materials for Na-ion battery. On the one hand, the coating deposited by CVD was found to display more graphitic-like domains and to close the CX microporosity, leading to enhanced Initial Coulombic Efficiency (ICE) and reversible capacity. On the other hand, due to its very high accessible surface area, the activated sample showed very low ICE (18 %) and reversible capacity (62 mAh g−1). However, once the activated sample was covered with a secondary carbon layer by CVD, the capacity reached 294 mAh g−1 with a high ICE of around 88 %, and an enhanced insertion plateau at low voltage was observed. Additionally, this activated-coated sample showed a high-rate capability and much greater stability than the other samples upon cycling. Such surface treatments provide an effective strategy for both understanding the impact of hard carbon surface properties on Na storage and optimizing their performance for negative electrodes in Na-ion batteries.
Disciplines :
Materials science & engineering
Author, co-author :
Karaman, Berke ; Université de Liège - ULiège > Chemical engineering
Tonnoir, Hélène ; Université de Liège - ULiège > Chemical engineering ; Laboratoire de Réactivité et Chimie des Solides - LRCS, UMR7314 CNRS, Université de Picardie Jules Verne, Amiens, France
Huo, Da; Laboratoire de Réactivité et Chimie des Solides - LRCS, UMR7314 CNRS, Université de Picardie Jules Verne, Amiens, France
Castro Gutiérrez, Jimena ; Université de Lorraine, CNRS, Institut Jean Lamour - IJL, Épinal, France
Carré, Bryan ; Université de Liège - ULiège > Chemical engineering
Bermont, Marion; Laboratoire de Réactivité et Chimie des Solides - LRCS, UMR7314 CNRS, Université de Picardie Jules Verne, Amiens, France
Deckers, Zoé ; Université de Liège - ULiège > Chemical engineering
Celzard, Alain ; Université de Lorraine, CNRS, Institut Jean Lamour - IJL, Épinal, France ; Institut Universitaire de France - IUF, Paris, France
Fierro, Vanessa ; Université de Lorraine, CNRS, Institut Jean Lamour - IJL, Épinal, France
Davoisne, Carine; Laboratoire de Réactivité et Chimie des Solides - LRCS, UMR7314 CNRS, Université de Picardie Jules Verne, Amiens, France
Janot, Raphaël; Laboratoire de Réactivité et Chimie des Solides - LRCS, UMR7314 CNRS, Université de Picardie Jules Verne, Amiens, France
Job, Nathalie ; Université de Liège - ULiège > Department of Chemical Engineering > Ingéniérie électrochimique : matériaux et procédés pour la transformation et le stockage d'énergie
ERDF - European Regional Development Fund ANR - French National Research Agency F.R.S.-FNRS - Fund for Scientific Research ULiège - Université de Liège Waalse Gewest SPW - Public Service of Wallonia
Funding text :
N.J. and B.K. would like to thank the F.R.S-FNRS for providing funding as part a PDR project (Convention T.0142.20). Z.D. is grateful to the F.R.S.-FNRS for a PhD grant (ASPIRANTS - 1.A.128.24F). N.J. also thanks the Walloon Region (project BatFactory \u2013 Grant number 310153) for funding. D.H. and R.J. acknowledge the ANR \u2013 FRANCE ( French National Research Agency ) for its financial support of the OSES project (ANR-22-CE05-0003-01). A.F.L. thanks the University of Li\u00E8ge (Fonds Sp\u00E9ciaux pour la Recherche FSR ) and the Fonds de Bay for their financial supports. UL authors gratefully acknowledge TALiSMAN and TALiSMAN2 projects, funded by the European Regional Development Fund ( ERDF ).
C. Bommier, T.W. Surta, M. Dolgos, X. Ji, Nano Lett 2015, 15, 5888.
D. Saurel, B. Orayech, B. Xiao, D. Carriazo, X. Li, T. Rojo, Adv Energy Mater 2018, 8, 1703268.
L.F. Zhao, Z. Hu, W.H. Lai, Y. Tao, J. Peng, Z.C. Miao, Y.X. Wang, S.L. Chou, H.K. Liu, S.X. Dou, Adv Energy Mater 2021, 11, 2002704.
N. Cuesta, I. Camean, A. Arenillas, A.B. Garcia, Micropor Mesopor Mater 2020, 308, 110542.
R. Dong, F. Wu, Y. Bai, Q. Li, X. Yu, Y. Li, Q. Ni, C. Wu, Energy Mater Adv 2022, 9896218.
X. Feng X, F.Wu ,Y. Fu ,Y. Li,Y. Gong, X. Ma, P. Zhang, C. Wu, Y. Bai, Small 2024, 21, 2409120.
M. Liu, F. Wu, Y. Gong, Y. Li, Y. Li, X. Feng, Q. Li, C. Wu, Y. Bai, Adv Mater 2023, 35, 2300002.
C. Bommier, W. Luo, W.Y. Gao, A. Greaney, S. Ma, X. Ji, Carbon 2014, 76, 165.
B. Karaman, H. Tonnoir, D. Huo, B. Carre, A.F. Leonard, J.C. Gutierrez, M.L. Piedboeuf, A. Celzard, V. Fierro, C. Davoisne, R. Janot, N. Job, Carbon 2024, 225, 119077.
J.M. Stratford, P.K. Allan, O. Pecher, P.A. Chater, C.P. Grey, Chem Comm 2016, 52, 12430.
N. Job, R. Pirard, J. Marien, J.P. Pirard, Carbon 2004, 42, 619.
C.A. Paez, M.S. Contreras, A. Leonard, S. Blacher, C.G. Olivera-Fuentes, J.P. Pirard, N. Job, Adsorption 2012, 18, 199.
X. Zhao, P. Shi, H. Wang, Q. Meng, X. Qi, G. Ai, F. Xie, X. Rong, Y. Xiong, Y. Lu, Y.-S Hu, Energy Storage Mater 2024, 70, 103543.
W. Hou, L. Ma, Z. Liu, Y. Hu, W. Miao, B.Tao, K. Sun, H. Peng, G. Ma, J. Energy Chem 2025, 105, 65-75.
H. Zhang, J. Yin, D. Ouyang, Y. Liu, R. Wu, R. Zhang, R. Huo, G. Yang, Y. Cai, J. Yin, J. Mater. Chem. A, 2025, 13, 8679-8690.
N. Job, A. Thery, R. Pirard, J. Marien, L. Kocon, J.-N. Rouzaud, et al. Carbon 2005, 43, 2481-2494
S. Brunauer, P.H. Emmett, E. Teller, J Am Chem Soc 1938, 60, 309.
J. Rouquerol, P. Llewellyn, F. Rouquerol, Stud Surf Sci Catal 2007, 160, 49.
Washburn, Edward W. Phys Rev 1921, 17.3, 273.
P. Mallet-Ladeira, PhD Thesis, Universite de Toulouse 3 Paul Sabatier, 2014. France.
M.L. Piedboeuf, A. F. Leonard, C. Balzers, G. Reichenauer, N. Job. Micropor Mesopor Mater 2019, 275, 278-287
B. Ranjan, D. Kaur, Small 2024, 20, 2307723.
P.J.F. Harris, Crit. Rev. Solid State Mater Sci 2005, 30, 235.
P.J.F. Harris, A. Burian, S. Duber, Philos Mag Lett 2000, 80, 381.
J. Ren, H. Weng, B. Li, F Chen, J. Liu, Z. Song. Front Earth Sci 2022, 10, 841353
B. Sajjadi, W.-Y. Chen, N. O. Egiebor, Rev Chem Eng 2019, 35(7), 777-815
C. del Mar Saavedra Rios, A. Beda, L. Simonin, C.M. Ghimbeu, In: Na-Ion Batteries (Eds. L. Monconduit and L. Croguennec), Wiley, 2021, ISBN 978-1-789-45013-2, Ch. 3, p.101.
A. Arenillas, J. A. Menendez, G. Reichenauer, A. Celzard, V. Fierro, F.Jose M. Hodar, N. Job, Carbon Gels for Electrochemical Applications. In: Organic and Carbon Gels. Advances in Sol-Gel Derived Materials and Technologies. Springer, 2019, Ch. 5, p. 149.
R. Vali, A. Laheaar, A. Janes, E. Lust, Electrochim Acta 2014, 121, 294-300.
S. Kumar, E. Majhi, A. S. Deshpande M. Khandelwal, Carbon Trends 2024, 16, 100385.
M. L. Piedboeuf, N. Job, A. Aqil, Y. Busby, V. Fierro, A. Celzard, C. Detrembleur, A.F. Leonard, ACS Appl Mater Interfaces 2020, 12, 36054.
H. Zheng, J. Li, X. Song, G. Liu, V.S. Battaglia, Electrochim Acta 2012, 71, 258.
R. Zhao, J. Liu, J. Gu, Appl Energy 2015, 139, 220.
B. Yang, S. Liu, H. Song, J. Zhou, Carbon 2019, 153, 298.