cat problem; geometrical methods; n-body problem; Statistical and Nonlinear Physics; Statistics and Probability; Modeling and Simulation; Mathematical Physics; Physics and Astronomy (all)
Abstract :
[en] We present a quantum description of the mechanism by which a free-falling cat manages to reorient itself and land on its feet, having all along zero angular momentum. Our approach is geometrical, making use of the fiber bundle structure of the cat configuration space. We show how the classical picture can be recovered, but also point out a purely quantum scenario, that ends up with a Schroedinger cat. Finally, we sketch possible applications to molecular, nuclear, and nano-systems.
Disciplines :
Physics
Author, co-author :
Chryssomalakos, C.; Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, México, Mexico
Hernández-Coronado, H.; Departamento de Física, CINVESTAV, México, Mexico
Serrano Ensástiga, Eduardo ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM) ; Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, México, Mexico
Language :
English
Title :
Do free-falling quantum cats land on their feet?
Publication date :
24 July 2015
Journal title :
Journal of Physics. A, Mathematical and Theoretical
Cambell L and Garnett W 2001 The Life of James Clerk Maxwell: With Selections from His Correspondence and Occasional Writings (Boston, MA: Adamant Media Corporation)
Kane T R and Scher M P 1969 Int. J. Solids Struct. 5 663-70
Guichardet A 1984 Ann. Inst. Henri Poincaré Phys. Theor. 40 329-42 (http://eudml.org/doc/76239)
Tachibana A and Iwai T 1986 Phys. Rev. A 33/4 2262-9
Shapere A and Wilczek F 1989 Am. J. Phys. 57 514-8
Montgomery R 1993 Gauge theory of the falling cat Dynamics and Control of Mechanical Systems ed M J Enos (Providence, RI: AMS) pp 193218
Montgomery R 1993 Gauge theory of the falling cat Fields Inst. Commun. 1 193-218
Littlejohn R G and Reinsch M 1995 Phys. Rev. A 52 2035-51
Littlejohn R G and Reinsch M 1997 Rev. Mod. Phys. 69/1 213-75
Littlejohn R G, Mitchell K A, Reinsch M, Aquilanti V and Cavalli S 1998 Phys. Rev. A 58/5 3705-17
Littlejohn R G, Mitchell K A, Reinsch M, Aquilanti V and Cavalli S 1998 Phys. Rev. A 58/5 3718-38
Montgomery R 1996 Nonlinearity 9 1341-60
Iwai T 1992 Phys. Lett. A 162 289-93
Herzberg G and Longuet-Higgins H C 1963 Discuss. Faraday Soc. 35 77-82
Mead C A and Truhlar D G 1979 J. Chem. Phys. 70 2284-96
Mead C A 1992 Rev. Mod. Phys. 64/1 51-85
Landau L D and Lifshitz E M 1981 Quantum Mechanics 3rd edn (Oxford: Pergamon)
Halpern M 1979 Phys. Rev. D 19/2 517-30
Littlejohn R and Mitchell K A 2002 Gauge theory of small vibrations in polyatomic molecules Geometry, Mechanics, and Dynamics ed P Newton et al (New York: Springer) pp 407-28
Berry M V and Wilkinson M 1984 Proc. R. Soc. A 392 15-43
Bengtsson I and Zyczkowski K 2008 Geometry of Quantum States (Cambridge: Cambridge University Press)
Tennyson J 1995 Rep. Prog. Phys. 57 421-76
Bijker R and Iachello F 2000 Phys. Rev. C 61 067305
Marín-Lámbarri D J, Bijker R, Freer M, Gai M, Kokalova T, Parker D J and Wheldon C 2014 Phys. Rev. Lett. 113 012502
Bijker R and Iachello F 2014 Phys. Rev. Lett. 112 152501