geometry; mathematical methods; quantum information; Statistical and Nonlinear Physics; Statistics and Probability; Modeling and Simulation; Mathematical Physics; Physics and Astronomy (all); Quantum Physics
Abstract :
[en] Spin states of maximal projection along some direction in space are called (spin) coherent, and are, in many respects, the 'most classical' available. For any spin s, the spin coherent states form a 2-sphere in the projective Hilbert space of the system. We address several questions regarding that sphere, in particular its possible intersections with complex lines. We also find that, like Dali's iconic clocks, it extends in all possible directions in . Given a generic spin state, we introduce an adapted spin coherent basis, and its dual, and comment on their possible uses. We give a simple expression for the Majorana constellation of the linear combination of two coherent states, and use Mason's theorem to give a lower bound on the number of distinct stars of a linear combination of two arbitrary spin-s states. Finally, we plot the image of the spin coherent sphere, assuming light in propagates along Fubini-Study geodesics. We argue that, apart from their intrinsic geometric interest, such questions translate into statements experimentalists might find useful.
Disciplines :
Physics
Author, co-author :
Chryssomalakos, Chryssomalis ; Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, CDMX, Mexico
Guzmán-González, E. ; Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, CDMX, Mexico
Serrano Ensástiga, Eduardo ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM) ; Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, CDMX, Mexico
Language :
English
Title :
Geometry of spin coherent states
Publication date :
21 March 2018
Journal title :
Journal of Physics. A, Mathematical and Theoretical
The authors wish to thank J Martin and L L Sánchez-Soto for bringing to their attention several relevant references ([6–8, 37, 45] and [12, 13, 15] respectively). They are particulalrly indebted to Frédéric Holweck for communicating to them the references [1, 11, 19, 26, 32], complete with an explanation of their relevance. They also acknowledge partial financial support from the UNAM-DGAPA-PAPIIT project IG 100316.
Commentary :
Added an explanatory comment on eq. (68) and several new references. 16 pages, 5 figures
Alexander J and Hirschowitz A 1992 La méthod d'Horace éclatée: application à l'interpolation en degré quatre Inventiones Math. 107 585-602
Amiet J P and Weigert S 1999 Coherent states and the reconstruction of pure spin states J. Opt. B: Quantum Semiclass. Opt. 1 L5
Anandan J 1991 A geometric approach to quantum mechanics Found. Phys. 21 1265-84
Ashtekar A and Schilling T 1999 Geometrical formulation of quantum mechanics On Einstein's Path ed A Harvey (New York: Springer)
Aulbach M, Markham D and Murao M 2010 The maximally entangled symmetric state in terms of the geometric measure New J. Phys. 12 073025
Baguette D, Bastin T and Martin J 2014 Multiqubit symmetric states with maximally mixed one-qubit reductions Phys. Rev. A 90 032314
Baguette D, Damanet F, Giraud O and Martin J 2015 Anticoherence of spin states with point-group symmetries Phys. Rev. A 92 052333
Baguette D and Martin J 2017 Anticoherence measures for pure spin states Phys. Rev. A 96 032304
Bengtsson I, Brännlund J and Zyczkowski K 2002 CPn, or, entanglement illustrated Int. J. Mod. Phys. A 17 4675
Bengtsson I and Zyczkowski K 2017 Geometry of Quantum States 2nd edn (Cambridge: Cambridge University Press)
Bernardi A and Carusotto I 2012 Algebraic geometry tools for the study of entanglement: an application to spin squeezed states J. Phys. A: Math. Theor. 45 105304
Björk G, Grassl M, de la Hoz P, Leuchs G and Sánchez-Soto L L 2015 Stars of the quantum universe: extremal constellations on the Poincaré sphere Phys. Scr. 90 108008
Björk G, Klimov A B, de la Hoz P, Grassl M, Leuchs G and Sánchez-Soto L L 2015 Extremal quantum states and their majorana constellations Phys. Rev. A 92 031801
Bohnet-Waldraff F, Braun D and Giraud O 2016 Quantumness of spin-1 states Phys. Rev. A 93 012104
Bouchard F et al 2017 Quantum metrology at the limit with extremal majorana constellations Optica 4 1429-32
Brody D C, Gustavsson A C T and Hughston L P 2007 Entanglement of three-qubit geometry J. Phys.: Conf. Ser. 67 012044
Brody D C and Hughston L P 2000 Geometric quantum mechanics J. Geom. Phys. 38 19
Chen L, Aulbach M and Hajdušek M 2014 Comparison of different definitions of the geometric measure of entanglement Phys. Rev. A 89 042305
Comas G and Seiguer M 2011 On the rank of a binary form Found. Comput. Math. 11 65-78
Dür W, Vidal G and Cirac J I 2000 Three qubits can be entangled in two inequivalent ways Phys. Rev. A 62 062314
Ganczarek W, Ku M and Zyczkowski K 2012 Barycentric measure of quantum entanglement Phys. Rev. A 85 032314
Giraud O, Braun D, Baguette D, Bastin T and Martin J 2015 Tensor representation of spin states Phys. Rev. Lett. 114 080401
Giraud O, Braun P and Braun D 2008 Classicality of spin states Phys. Rev. A 78 042112
Giraud O, Braun P and Braun D 2010 Quantifying quantumness and the quest for queens of quantum New J. Phys. 12 063005
Hannay J H 1996 Chaotic analytic zero points: exact statistics for those of a random spin state J. Phys. A: Math. Gen. 29 L101-5
Harris J 2013 Algebraic Geometry: a First Course (New York: Springer) (https://doi.org/10.1007/978-1-4757-2189-8)
Heydari H 2008 Geometrical structure of entangled states and the secant variety Quantum Inf. Process. 7 43
Hillery M 1987 Nonclassical distance in quantum optics Phys. Rev. A 35 725-32
Holweck F, Luque J-G and Thibon J-Y 2012 Geometric descriptions of entangled states by auxiliary varieties J. Math. Phys. 53 102203
Hubener R, Kleinmann M, Wei T C, González-Guillén C and Gühne O 2009 Geometric measure of entanglement for symmetric states Phys. Rev. A 80 032324
Kuś M and Zyczkowski K 2001 Geometry of entangled states Phys. Rev. A 63 032307
Landsberg J M 2012 (Tensors: Geometry and Applications vol 128) (Providence, RI: American Mathematical Society)
Lang S 1990 Old and new conjectured diophantine inequalities Bull. Am. Math. Soc. 23 37-75
Leboeuf P 1999 Random analytic chaotic eigenstates J. Stat. Phys. 95 651-64
Majorana E 1932 Atomi orientati in campo magnetico variabile Nuovo Cimento 9 43
Mandilara A, Coudreau T, Keller A and Milman P 2014 Entanglement classification of pure symmetric states via spin coherent states Phys. Rev. A 90 050302
Martin J, Giraud O, Braun P A, Braun D and Bastin T 2010 Multiqubit symmetric states with high geometric entanglement Phys. Rev. A 81 062347
Mason R C 1984 Diophantine Equations Over Function Fields (London Mathematical Society Lecture Note Series vol 96) (Cambidge: Cambidge University Press)
Mason R C 1984 Equations over function fields Number Theory, Noordwijkerhout 1983 (Lecture Notes in Mathematics vol 1068) ed H Jager (New York: Springer)
Massad J E and Aravind P K 1999 The Penrose dodecahedron revisited Am. J. Phys. 67 631
Miyake A 2003 Classification of multipartite entangled states by multidimensional determinants Phys. Rev. A 67 012108
Mosseri R and Dandoloff R 2001 Geometry of entangled states, Bloch spheres and Hopf fibrations J. Phys. A: Math. Gen. 34 10243
Perelomov A 1986 Generalized Coherent States and their Applications (New York: Springer)
Radcliffe J M 1971 Some properties of coherent spin states J. Phys. A: Gen. Phys. 4 313-24
Sanz M, Egusquiza I L, Di Candia R, Saberi H, Lamata L and Solano E 2016 Entanglement classification with matrix product states Sci. Rep. 6 30188
Schilling T 1996 Geometry of quantum mechanics PhD Thesis The Pennsylvania State University
Turner L R 1966 Inverse of the Vandermonde matrix with applications Nasa Technical Note D-3547
Varshalovich D A, Moskalev A N and Khersonskii V K 1988 Quantum Theory of Angular Momentum (Singapore: World Scientific)
Wei T and Goldbart P M 2003 Geometric measure of entanglement and applications to bipartite and multipartite quantum states Phys. Rev. A 68 042307
Zak F 1993 Tangents and Secants of Algebraic Varieties (Translations of Mathematical Monographs vol 127) (Providence, RI: American Mathematical Society)
Zimba J and Penrose R 1993 On Bell non-locality without probabilities: more curious geometry Stud. Hist. Phil. Sci. 24 697-720