Article (Scientific journals)
Majorana representation for mixed states
Serrano Ensástiga, Eduardo; Braun, D.
2020In Physical Review. A, 101 (2)
Peer Reviewed verified by ORBi
 

Files


Full Text
06_maj_rep_mixed_states_2020.pdf
Publisher postprint (950.47 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Density matrix; Hermitian operators; Homogeneous polynomials; Majorana representation; Original state; Projective spaces; Spin densities; Tensor representation; Atomic and Molecular Physics, and Optics; Quantum Physics
Abstract :
[en] We generalize the Majorana stellar representation of spin-s pure states to mixed states, and in general to any Hermitian operator, defining a bijective correspondence between three spaces: The spin-density matrices, a projective space of homogeneous polynomials of four variables, and a set of equivalence classes of points (constellations) on spheres of different radii. The representation behaves well under rotations by construction, and also under partial traces where the reduced density matrices inherit their constellation classes from the original state ρ. We express several concepts and operations related to density matrices in terms of the corresponding polynomials, such as the anticoherence criterion and the tensor representation of spin-s states described in Giraud et al. [Phys. Rev. Lett. 114, 080401 (2015)].PRLTAO0031-900710.1103/PhysRevLett.114.080401
Disciplines :
Physics
Author, co-author :
Serrano Ensástiga, Eduardo  ;  Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM) ; Institut für Theoretische Physik, Universität Tübingen, Tübingen, Germany
Braun, D. ;  Institut für Theoretische Physik, Universität Tübingen, Tübingen, Germany
Language :
English
Title :
Majorana representation for mixed states
Publication date :
February 2020
Journal title :
Physical Review. A
ISSN :
2469-9926
eISSN :
2469-9934
Publisher :
American Physical Society
Volume :
101
Issue :
2
Peer reviewed :
Peer Reviewed verified by ORBi
Funding text :
E.S.-E. thanks the University Tübingen and its T@T fellowship. The authors thank John Martin for fruitful correspondence.
Available on ORBi :
since 22 December 2025

Statistics


Number of views
8 (0 by ULiège)
Number of downloads
15 (0 by ULiège)

Scopus citations®
 
21
Scopus citations®
without self-citations
13
OpenCitations
 
17
OpenAlex citations
 
25

Bibliography


Similar publications



Contact ORBi