Article (Scientific journals)
Toponomic quantum computation
Chryssomalakos, C.; Hanotel, L.; Guzmán-González, E. et al.
2022In Modern Physics Letters A, 37 (27)
Peer Reviewed verified by ORBi
 

Files


Full Text
10_toponomic_quantum_computation.pdf
Publisher postprint (2.81 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
geometric phases; Holonomic quantum computation; quantum gates; Wilczek-Zee; Nuclear and High Energy Physics; Astronomy and Astrophysics; Physics and Astronomy (all)
Abstract :
[en] Holonomic quantum computation makes use of non-abelian geometric phases, associated to the evolution of a subspace of quantum states, to encode logical gates. We identify a special class of subspaces, for which a sequence of rotations results in a non-abelian holonomy of a topological nature, so that it is invariant under any SO(3)-perturbation. Making use of a Majorana-like stellar representation for subspaces, we give explicit examples of topological-holonomic (or toponomic) NOT and CNOT gates.
Disciplines :
Physics
Author, co-author :
Chryssomalakos, C.;  Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
Hanotel, L.;  Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
Guzmán-González, E.;  Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, Mexico
Serrano Ensástiga, Eduardo  ;  Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM) ; Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Mexico
Language :
English
Title :
Toponomic quantum computation
Publication date :
07 September 2022
Journal title :
Modern Physics Letters A
ISSN :
0217-7323
Publisher :
World Scientific
Volume :
37
Issue :
27
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
UNAM - Universidad Nacional Autónoma de México
CONACYT - Consejo Nacional de Ciencia y Tecnología
Available on ORBi :
since 22 December 2025

Statistics


Number of views
6 (0 by ULiège)
Number of downloads
65 (0 by ULiège)

Scopus citations®
 
2
Scopus citations®
without self-citations
1
OpenCitations
 
1
OpenAlex citations
 
6

Bibliography


Similar publications



Contact ORBi