geometric phases; Holonomic quantum computation; quantum gates; Wilczek-Zee; Nuclear and High Energy Physics; Astronomy and Astrophysics; Physics and Astronomy (all)
Abstract :
[en] Holonomic quantum computation makes use of non-abelian geometric phases, associated to the evolution of a subspace of quantum states, to encode logical gates. We identify a special class of subspaces, for which a sequence of rotations results in a non-abelian holonomy of a topological nature, so that it is invariant under any SO(3)-perturbation. Making use of a Majorana-like stellar representation for subspaces, we give explicit examples of topological-holonomic (or toponomic) NOT and CNOT gates.
Disciplines :
Physics
Author, co-author :
Chryssomalakos, C.; Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
Hanotel, L.; Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
Guzmán-González, E.; Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, Mexico
Serrano Ensástiga, Eduardo ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM) ; Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Mexico