[en] Meditation is thought to promote healthy aging by improving mental health, preserving brain integrity and reducing Alzheimer's disease risk. We examined the impact of long-term meditation expertise and an 18-month meditation training on brain aging in older adults using machine learning. We included 25 Older Expert Meditators (OldExpMed) with > 20 years of practice and 135 Cognitively Unimpaired Older Adults (CUOA) from the Age-Well randomized controlled trial. CUOA were randomized (1:1:1) into an 18-month meditation training, a non-native language training, and a no intervention group. Brain age was predicted using a machine learning model trained on gray and white matter volume and glucose metabolism data from ADNI and replicated with a second model. Brain Predicted Age Difference (BrainPAD) was computed as the gap between predicted and chronological age. We assessed meditation expertise effects on BrainPAD, its links with meditation hours, cognitive, and affective measures, and the impact of 18-month training. Compared to CUOA, OldExpMed exhibited significantly lower/more negative BrainPAD, linked to meditation hours, mental imagery, and prosocialness. No significant effect of 18-month training was observed. Results were consistent across the replication model. Long-term meditation is associated with younger brain age, but 18-month training has no effect, emphasizing the need for sustained practice to support healthy brain aging.
Lambert, Natacha; Normandy University, UNICAEN, INSERM, UA20, Neuropresage, Cyceron, 14000, Caen, France ; GRAYC Laboratory, University of Caen Normandy, Caen, France
Gaser, Christian; Department of Neurology, Jena University Hospital, Jena, Germany ; Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany ; German Center for Mental Health (DZPG), Jena, Germany
Thirion, Bertrand; Inria, CEA, Université Paris-Saclay, Paris, France
FONDATION ALZHEIMER Fondation de France INSERM - Institut National de la Santé et de la Recherche Médicale Alzheimer's Society SEFRI - Secrétariat d'État à la Formation, à la Recherche et à l'Innovation Région Normandie ANR - Agence Nationale de la Recherche Association France-Alzheimer et Maladies Apparentées Fondation Vaincre Alzheimer FRA - Fondation pour la Recherche sur la Maladie d'Alzheimer F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding text :
The authors thank the Cyceron MRI-PET staff members, Clara Benson, and Thien-Huong Tran (alias Titi Dolma) for their help with recruitment and data acquisition; Aur\u00E9lia Cognet and Val\u00E9rie Lefranc for administrative support. We acknowledge the members of the Medit-Ageing Research Group, Rhonda Smith, Charlotte Reid, Euclid team (Eric Frison), the sponsor (P\u00F4le de Recherche Clinique at Inserm, H\u00E9l\u00E8ne Esperou), and all the participants of the study for their contribution. The Age-Well randomized clinical trial is part of the Medit-Ageing project and is supported by the European Union\u2019s Horizon 2020 Research and Innovation Program (grant 667,696) and R\u00E9gion Normandie (Label d\u2019Excellence). N.L.M. was supported by a Senior Fellowship from the Alzheimer\u2019s Society (AS-SF-15b-002). J.G. was supported by a Young Researcher Grant 2019-2022 from the Fondation Alzheimer and Fondation de France. A.L. and G.C. were supported by Fondation d\u2019Entreprise MMA, des Entrepreneurs du Futur and MMA and by Institut National de la Sant\u00E9 et de la Recherche M\u00E9dicale (Inserm). O.K. received funding from the Secr\u00E9tariat d\u2019\u00E9tat \u00E0 la formation, \u00E0 la recherche et \u00E0 l\u2019innovation (SEFRI) under contract no. 15.0336 in the context of the European project \u00AB Medit-Ageing. G.C. received funding from Fondation Alzheimer, Programme Hospitalier de Recherche Clinique, Fondation Alzheimer, Agence Nationale de la Recherche, R\u00E9gion Normandie, Association France Alzheimer et maladies apparent\u00E9es, Fondation Vaincre Alzheimer, Fondation Recherche Alzheimer. G.P. was supported by R\u00E9gion Normandie, Ministry of Higher Education and Research and INSERM. The funders had no role in the study design, data acquisition, data analysis, data interpretation, or writing. The MEDIT-AGEING Research Group: Allais Florence, BA: EUCLID/F-CRIN Clinical Trials Platform, Bordeaux, France, Data manager, Data management. Andr\u00E9 Claire, PhD: Institut National de la Sant\u00E9 et de la Recherche M\u00E9dicale, Caen, France, PhD student, Acquisition, analysis, or interpretation of data. Arenaza Urquijo Eider, PhD: Institut National de la Sant\u00E9 et de la Recherche M\u00E9dicale, Caen, France, Postdoctoral researcher, Study design; acquisition, analysis, or interpretation of data. Baez Lugo Sebastian, MSc: University of Geneva, Geneva, Switzerland, PhD student, Acquisition, analysis, or interpretation of data. Bejanin Alexandre, PhD: Institut National de la Sant\u00E9 et de la Recherche M\u00E9dicale, Caen, France, Postdoctoral researcher, Acquisition, analysis, or interpretation of data. Botton Maelle, MSc: Institut National de la Sant\u00E9 et de la Recherche M\u00E9dicale, Caen, France, Neuropsychologist, Acquisition, analysis, or interpretation of data. Champetier Pierre, PhD: Institut National de la Sant\u00E9 et de la Recherche M\u00E9dicale, Caen, France, PhD student, Acquisition, analysis, or interpretation of data. Chauveau L\u00E9a, MSc: Institut National de la Sant\u00E9 et de la Recherche M\u00E9dicale, Caen, France, PhD student, Acquisition, analysis, or interpretation of data. Ch\u00E9telat Ga\u00EBl, PhD: Institut National de la Sant\u00E9 et de la Recherche M\u00E9dicale, Caen, France, Coordinator, Work Package Leader, Obtained funding, study design. Chocat Anne, MD: Institut National de la Sant\u00E9 et de la Recherche M\u00E9dicale, Caen, France, Neurologist, Investigating doctor. Collette Fabienne, PhD: University of Liege, Liege, Belgium, Group leader, Obtained funding, study design. Dautricourt Sophie, MD,PhD: Institut National de la Sant\u00E9 et de la Recherche M\u00E9dicale, Caen, France, PhD student, Acquisition, analysis, or interpretation of data. de Flores Robin, PhD: Institut National de la Sant\u00E9 et de la Recherche M\u00E9dicale, Caen, France, Postdoctoral researcher, Acquisition, analysis, or interpretation of data; administrative, technical, or material support. de la Sayette Vincent, MD, PhD: Centre Hospitalier Universitaire de Caen, Caen, France, Neurologist, Principal Investigating doctor. Delarue Marion, MSc: Institut National de la Sant\u00E9 et de la Recherche M\u00E9dicale, Caen, France, Neuropsychologist, Acquisition, analysis, or interpretation of data. Demnitz-King Harriet, MSc: University College London, United Kingdom, PhD student, Acquisition, analysis, or interpretation of data. Egret St\u00E9phanie, MSc: Institut National de la Sant\u00E9 et de la Recherche M\u00E9dicale, Caen, France, Neuropsychologist, Acquisition, analysis, or interpretation of data. El Sadawy Rawda, MSc: Institut National de la Sant\u00E9 et de la Recherche M\u00E9dicale, Caen, France, Neuropsychologist, Acquisition, analysis, or interpretation of data.The authors thank the Cyceron MRI-PET staff members, Clara Benson, and Thien-Huong Tran (alias Titi Dolma) for their help with recruitment and data acquisition; Aur\u00E9lia Cognet and Val\u00E9rie Lefranc for administrative support. We acknowledge the members of the Medit-Ageing Research Group, Rhonda Smith, Charlotte Reid, Euclid team (Eric Frison), the sponsor (P\u00F4le de Recherche Clinique at Inserm, H\u00E9l\u00E8ne Esperou), and all the participants of the study for their contribution. The Age-Well randomized clinical trial is part of the Medit-Ageing project and is supported by the European Union\u2019s Horizon 2020 Research and Innovation Program (grant 667,696) and R\u00E9gion Normandie (Label d\u2019Excellence). N.L.M. was supported by a Senior Fellowship from the Alzheimer\u2019s Society (AS-SF-15b-002).
J.K. Djernes Prevalence and predictors of depression in populations of elderly: A review Acta. Psychiatr. Scand. 113 372 387 1:STN:280:DC%2BD287ps1Onsg%3D%3D 16603029 10.1111/j.1600-0447.2006.00770.x
K. Horackova et al. Prevalence of late-life depression and gap in mental health service use across European regions Eur. Psychiatry 57 19 25 30658276 10.1016/j.eurpsy.2018.12.002
P. Thomas C. Hazif-Thomas Depression in elderly Rev. Prat. 58 389 393 18506978
A. Lutz H.A. Slagter J.D. Dunne R.J. Davidson Attention regulation and monitoring in meditation Trends Cogn. Sci. 12 163 169 18329323 2693206 10.1016/j.tics.2008.01.005
Y.-Y. Tang B.K. Hölzel M.I. Posner The neuroscience of mindfulness meditation Nat. Rev. Neurosci. 16 213 225 1:CAS:528:DC%2BC2MXksF2lurw%3D 25783612 10.1038/nrn3916
K.E. Innes T.K. Selfe Meditation as a therapeutic intervention for adults at risk for alzheimer’s disease – potential benefits and underlying mechanisms Front. Psychiatry 5 40 24795656 4005947 10.3389/fpsyt.2014.00040
T. Gard B.K. Hölzel S.W. Lazar The potential effects of meditation on age-related cognitive decline: a systematic review Ann. N Y Acad. Sci. 1307 89 103 2014NYASA1307..89G 24571182 4024457 10.1111/nyas.12348
R. Marciniak et al. Effect of meditation on cognitive functions in context of aging and neurodegenerative diseases Front. Behav. Neurosci. 8 17 24478663 3903052 10.3389/fnbeh.2014.00017
R. Prakash et al. Long-term concentrative meditation and cognitive performance among older adults Aging Neuropsychol. Cogn. 19 479 494 10.1080/13825585.2011.630932
J. Perez-Blasco A. Sales J.C. Meléndez T. Mayordomo The effects of mindfulness and self-compassion on improving the capacity to adapt to stress situations in elderly people living in the community Clin. Gerontol. 39 90 103 10.1080/07317115.2015.1120253
S. Prakhinkit S. Suppapitiporn H. Tanaka D. Suksom Effects of buddhism walking meditation on depression, functional fitness, and endothelium-dependent vasodilation in depressed elderly Jo. Altern. Complement. Med. 20 411 416 10.1089/acm.2013.0205
M.J. Sullivan et al. The support, education, and research in chronic heart failure study (SEARCH): A mindfulness-based psychoeducational intervention improves depression and clinical symptoms in patients with chronic heart failure Am. Heart J. 157 84 90 19081401 10.1016/j.ahj.2008.08.033
L. Gamaiunova P.-Y. Brandt G. Bondolfi M. Kliegel Exploration of psychological mechanisms of the reduced stress response in long-term meditation practitioners Psychoneuroendocrinology 104 143 151 30849720 10.1016/j.psyneuen.2019.02.026
M.A. Rosenkranz et al. Reduced stress and inflammatory responsiveness in experienced meditators compared to a matched healthy control group Psychoneuroendocrinology 68 117 125 26970711 4851883 10.1016/j.psyneuen.2016.02.013
Y.-Y. Tang et al. Long-term physical exercise and mindfulness practice in an aging population Front. Psychol. 11 358 32300317 7142262 10.3389/fpsyg.2020.00358
G. Chételat et al. Reduced age-associated brain changes in expert meditators: a multimodal neuroimaging pilot study Sci. Rep. 7 10160 2017NatSR..710160C 28860449 5578985 10.1038/s41598-017-07764-x
Luders, E. Forever young(er): Potential age-defying effects of long-term meditation on gray matter atrophy. Front. Psychol.5, (2015).
B.A. Pickut et al. Mindfulness based intervention in Parkinson’s disease leads to structural brain changes on MRI: A randomized controlled longitudinal trial Clin. Neurol. Neurosurg. 115 2419 2425 24184066 10.1016/j.clineuro.2013.10.002
E.J. Lenze et al. Effects of mindfulness training and exercise on cognitive function in older adults: A randomized clinical trial JAMA 328 2218 2229 36511926 9856438 10.1001/jama.2022.21680
G. Chételat et al. Effect of an 18-month meditation training on regional brain volume and perfusion in older adults JAMA Neurol. 79 1165 1174 36215061 9552046 10.1001/jamaneurol.2022.3185
T. Whitfield et al. The effect of mindfulness-based programs on cognitive function in adults: A systematic review and meta-analysis Neuropsychol. Rev. 32 677 702 34350544 10.1007/s11065-021-09519-y
B.K.H. Chau et al. Meditation-induced neuroplastic changes of the prefrontal network are associated with reduced valence perception in older people Brain Neurosci. Adv. 2 2398212818771822 32166138 7058252 10.1177/2398212818771822
C.M. Smart S.J. Segalowitz B.P. Mulligan J. Koudys J.R. Gawryluk Mindfulness training for older adults with subjective cognitive decline: Results from a pilot randomized controlled trial J. Alzheimers Dis. 52 757 774 27060951 10.3233/JAD-150992
S.L. Valk et al. Structural plasticity of the social brain: Differential change after socio-affective and cognitive mental training Sci. Adv. 3 2017SciA..3E0489V 28983507 5627980 10.1126/sciadv.1700489 e1700489
S. Ganesan et al. ENIGMA-Meditation: Worldwide consortium for neuroscientific investigations of meditation practices Biol. Psychiatry Cogn. Neurosci. Neuroimaging S2451–9022 24 00314 318 10.1016/j.bpsc.2024.10.015
T.R.A. Kral et al. Absence of structural brain changes from mindfulness-based stress reduction: Two combined randomized controlled trials Sci. Adv. 8 eabk3316 35594344 9122316 10.1126/sciadv.abk3316
Franke, K. & Gaser, C. Ten Years of BrainAGE as a neuroimaging biomarker of brain aging: What insights have we gained? Front. Neurol.10, (2019).
J.H. Cole et al. Brain age predicts mortality Mol. Psychiatry 23 1385 1392 1:STN:280:DC%2BC1crgslOrsg%3D%3D 28439103 10.1038/mp.2017.62
N. Adluru C.H. Korponay D.L. Norton R.I. Goldman R.J. Davidson BrainAGE and regional volumetric analysis of a Buddhist monk: A longitudinal MRI case study Neurocase 26 79 90 32100616 7150651 10.1080/13554794.2020.1731553
E. Luders N. Cherbuin C. Gaser Estimating brain age using high-resolution pattern recognition: Younger brains in long-term meditation practitioners Neuroimage 134 508 513 27079530 10.1016/j.neuroimage.2016.04.007
F. Kurth N. Cherbuin E. Luders Reduced age-related degeneration of the hippocampal subiculum in long-term meditators Psychiatry Res. 232 214 218 25907419 10.1016/j.pscychresns.2015.03.008
F. Kurth S.E. Zsadanyi E. Luders Reduced age-related gray matter loss in the subgenual cingulate cortex in long-term meditators Brain Imaging Behav. 15 2824 2832 34686969 10.1007/s11682-021-00578-6
E. Luders F.A. Jain F. Kurth Diminished age-related decline of the amygdala in long-term meditation practitioners Psychosom. Med. 83 650 1:CAS:528:DC%2BB3MXhslSiurbF 33856149 10.1097/PSY.0000000000000913
J. Pearson The human imagination: The cognitive neuroscience of visual mental imagery Nat. Rev. Neurosci. 20 624 634 1:CAS:528:DC%2BC1MXhsFWqsbrI 31384033 10.1038/s41583-019-0202-9
S.D. Slotnick W.L. Thompson S.M. Kosslyn Visual memory and visual mental imagery recruit common control and sensory regions of the brain Cogn. Neurosci. 3 14 20 24168646 10.1080/17588928.2011.578210
B.K. Hölzel et al. Investigation of mindfulness meditation practitioners with voxel-based morphometry Soc. Cogn. Affect Neurosci. 3 55 61 19015095 2569815 10.1093/scan/nsm038
J.A. Grant et al. Cortical thickness, mental absorption and meditative practice: Possible implications for disorders of attention Biol. Psychol. 92 275 281 23046904 10.1016/j.biopsycho.2012.09.007
S.W. Lazar et al. Meditation experience is associated with increased cortical thickness NeuroReport 16 1893 1897 16272874 1361002 10.1097/01.wnr.0000186598.66243.19
A.S. Moss et al. Cerebral blood flow and brain functional connectivity changes in older adults participating in a mindfulness-based stress reduction program Behav. Sci. (Basel) 12 48 35200299 10.3390/bs12020048
I.A. Breukelaar et al. Cognitive control network anatomy correlates with neurocognitive behavior: A longitudinal study Hum. Brain Mapp. 38 631 643 27623046 5347905 10.1002/hbm.23401
D.-H. Kang et al. The effect of meditation on brain structure: Cortical thickness mapping and diffusion tensor imaging Soc. Cogn. Affect Neurosci. 8 27 33 22569185 10.1093/scan/nss056
Skottnik, L. & Linden, D. E. J. Mental imagery and brain regulation—new links between psychotherapy and neuroscience. Front. Psychiatry10, (2019).
O.M. Koçak M. Ciçek B. Yağmurlu C. Atbasoğlu How is cognitive control of a simple mental image achieved? An fMRI study Int. J. Neurosci. 118 1781 1796 18937119 10.1080/00207450802328482
J. Pearson T. Naselaris E.A. Holmes S.M. Kosslyn Mental imagery: Functional mechanisms and clinical applications Trends. Cogn. Sci. 19 590 602 26412097 4595480 10.1016/j.tics.2015.08.003
K. Kirkland J. Jetten M. Wilks J. Kirby Promoting prosocial behavior in an unequal world Front. Psychol. 13 1021093 36817385 9932976 10.3389/fpsyg.2022.1021093
J.N. Donald et al. Does your mindfulness benefit others? A systematic review and meta-analysis of the link between mindfulness and prosocial behaviour Br. J. Psychol. 110 101 125 30094812 10.1111/bjop.12338
B. Khoury et al. Tri-process model of interpersonal mindfulness: Theoretical framework and study protocol Front. Psychol. 14 1130959 37179876 10170994 10.3389/fpsyg.2023.1130959
U. Kreplin M. Farias I.A. Brazil The limited prosocial effects of meditation: A systematic review and meta-analysis Sci. Rep. 8 2403 2018NatSR..8.2403K 29402955 5799363 10.1038/s41598-018-20299-z
A.M. Wyss D. Knoch Neuroscientific approaches to study prosociality Curr. Opin. Psychol. 44 38 43 34560373 10.1016/j.copsyc.2021.08.028
G. Bellucci J.A. Camilleri S.B. Eickhoff F. Krueger Neural signatures of prosocial behaviors Neurosci. Biobehav. Rev. 118 186 195 32707344 7958651 10.1016/j.neubiorev.2020.07.006
E. Luders Exploring age-related brain degeneration in meditation practitioners Ann. N. Y. Acad. Sci. 1307 82 88 2014NYASA1307..82L 23924195 10.1111/nyas.12217
D. Lim D. DeSteno Suffering and compassion: The links among adverse life experiences, empathy, compassion, and prosocial behavior Emotion 16 175 182 26751630 10.1037/emo0000144
G. Chételat et al. Why could meditation practice help promote mental health and well-being in aging? Alzheimers Res. Ther. 10 57 29933746 6015474 10.1186/s13195-018-0388-5
C.M. Luberto et al. A systematic review and meta-analysis of the effects of meditation on empathy, compassion, and prosocial behaviors Mindfulness (N Y) 9 708 724 30100929 10.1007/s12671-017-0841-8
K.C.R. Fox et al. Is meditation associated with altered brain structure? A systematic review and meta-analysis of morphometric neuroimaging in meditation practitioners Neurosci. Biobehav. Rev. 43 48 73 24705269 10.1016/j.neubiorev.2014.03.016
N. Raz et al. Regional brain changes in aging healthy adults: General trends, individual differences and modifiers Cereb. Cortex 15 1676 1689 15703252 10.1093/cercor/bhi044
A.M. Fjell L. McEvoy D. Holland A.M. Dale K.B. Walhovd What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus Prog. Neurobiol. 117 20 40 1:CAS:528:DC%2BC2cXjvFSlsbo%3D 24548606 4343307 10.1016/j.pneurobio.2014.02.004
A. Lutz et al. The age-well observational study on expert meditators in the medit-ageing European project Alzheimers Dement. (N Y) 4 756 764 30662933 10.1016/j.trci.2018.11.002
G. Poisnel et al. The age-well randomized controlled trial of the medit-ageing European project: Effect of meditation or foreign language training on brain and mental health in older adults Alzheimers Dement. (N Y) 4 714 723 30581977 10.1016/j.trci.2018.10.011
A. Lutz et al. The protective effect of mindfulness and compassion meditation practices on ageing: Hypotheses, models and experimental implementation Ageing Res. Rev. 72 34718153 10.1016/j.arr.2021.101495 101495
M. Schlosser et al. measuring psychological mechanisms in meditation practice: Using a phenomenologically grounded classification system to develop theory-based composite scores Mindfulness 13 600 614 10.1007/s12671-021-01816-0
P. Kalc R. Dahnke F. Hoffstaedter C. Gaser BrainAGE: Revisited and reframed machine learning workflow Hum. Brain Mapp. 45 38379519 10879910 10.1002/hbm.26632 e26632
J. Rokicki et al. Multimodal imaging improves brain age prediction and reveals distinct abnormalities in patients with psychiatric and neurological disorders Hum. Brain Mapp. 42 1714 1726 33340180 7978139 10.1002/hbm.25323
J.H. Cole Multimodality neuroimaging brain-age in UK biobank: relationship to biomedical, lifestyle, and cognitive factors Neurobiol. Aging 92 34 42 32380363 7280786 10.1016/j.neurobiolaging.2020.03.014
M. Xiong et al. Comparison of machine learning models for brain age prediction using six imaging modalities on middle-aged and older adults Sensors (Basel) 23 3622 2023Senso.23.3622X 37050682 10.3390/s23073622
J.H. Cole K. Franke Predicting age using neuroimaging: innovative brain ageing biomarkers Trends Neurosci. 40 681 690 1:CAS:528:DC%2BC2sXhs1Kntr%2FI 29074032 10.1016/j.tins.2017.10.001
J. Han S.Y. Kim J. Lee W.H. Lee Brain age prediction: A comparison between machine learning models using brain morphometric data Sensors (Basel) 22 8077 2022Senso.22.8077H 36298428 10.3390/s22208077
W.H. Lee M. Antoniades H.G. Schnack R.S. Kahn S. Frangou Brain age prediction in schizophrenia: does the choice of machine learning algorithm matter? Psychiatry Res. Neuroimaging 310 33714090 8056405 10.1016/j.pscychresns.2021.111270 111270
J.H. Cole et al. Increased brain-predicted aging in treated HIV disease Neurology 88 1349 1357 28258081 5379929 10.1212/WNL.0000000000003790
K. Franke G. Ziegler S. Klöppel C. Gaser Alzheimer’s Disease Neuroimaging Initiative Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters Neuroimage 50 883 892 20070949 10.1016/j.neuroimage.2010.01.005
Y. Zhang et al. Post hoc power analysis: Is it an informative and meaningful analysis? Gen. Psychiatr. 32 31552383 6738696 10.1136/gpsych-2019-100069 e100069
S. More et al. Brain-age prediction: A systematic comparison of machine learning workflows Neuroimage 270 36801372 10.1016/j.neuroimage.2023.119947 119947
T.T. Le et al. A nonlinear simulation framework supports adjusting for age when analyzing BrainAGE Front. Aging Neurosci. 10 317 30405393 6208001 10.3389/fnagi.2018.00317
A.-M.G. de Lange et al. Mind the gap: Performance metric evaluation in brain-age prediction Hum. Brain Mapp. 43 3113 3129 35312210 9188975 10.1002/hbm.25837