[en] The surface of Ganymede exhibits diversity in composition, interpreted as indicative of geological age differences between dark and bright terrains. Observations from Galileo and Earth-based telescopes have revealed the presence of both water ice and non-ice material, indicative of either endogenic or exogenic processes, or some combination. However, these observations attained a spatial resolution that was too coarse to reveal the surface composition at a local scale. Here we present the high-spatial-resolution infrared spectra of Ganymede observed with the Jovian InfraRed Auroral Mapper onboard the National Aeronautics and Space Administration’s Juno spacecraft during a close flyby that occurred on 7 June 2021. We found that at a pixel resolution <1 km, the surface of Ganymede exhibits signatures diagnostic of hydrated sodium chloride, ammonium chloride and sodium/ammonium carbonate, as well as organic compounds, possibly including aliphatic aldehydes. Carbon dioxide shows up mostly at trailing longitudes. The composition and spatial distribution of these salts and organics suggest that their origin is endogenic, resulting from the extrusion of subsurface brines, whose chemistry reflects the water–rock interaction inside Ganymede.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Tosi, Federico ; Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Mura, Alessandro; Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Cofano, Alessandra ; Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Zambon, Francesca; Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Glein, Christopher R.; Southwest Research Institute, San Antonio, United States
Ciarniello, Mauro ; Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Lunine, Jonathan I. ; Cornell University, Ithaca, United States
Piccioni, Giuseppe; Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Sordini, Roberto ; Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Adriani, Alberto; Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Bolton, Scott J. ; Southwest Research Institute, San Antonio, United States
Hansen, Candice J.; Planetary Science Institute, Tucson, United States
Nordheim, Tom A.; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, United States
Moirano, Alessandro ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP) ; Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy ; Università degli Studi di Roma ‘La Sapienza’, Rome, Italy
Agostini, Livio ; Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Altieri, Francesca; Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Brooks, Shawn M.; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, United States
Cicchetti, Andrea ; Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Dinelli, Bianca Maria; Consiglio Nazionale delle Ricerche–Istituto di Scienze dell’Atmosfera e del Clima, Bologna, Italy
Grassi, Davide; Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Migliorini, Alessandra ; Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Moriconi, Maria Luisa; Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Noschese, Raffaella ; Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Scarica, Pietro; Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Sindoni, Giuseppe ; Agenzia Spaziale Italiana, Rome, Italy
Stefani, Stefania; Istituto Nazionale di Astrofisica–Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Turrini, Diego ; Istituto Nazionale di Astrofisica–Osservatorio Astrofisico di Torino, Pino Torinese, Italy
ASI - Agenzia Spaziale Italiana NASA - National Aeronautics and Space Administration
Funding text :
The JIRAM instrument is funded by the Italian Space Agency (Agenzia Spaziale Italiana (ASI)). It was built by Selex ES under the leadership of the Italian National Institute for Astrophysics (Istituto Nazionale di Astrofisica (INAF))–Institute for Space Astrophysics and Planetology (Istituto di Astrofisica e Planetologia Spaziali (IAPS)), Rome, Italy. JIRAM is operated by INAF–IAPS, Rome, Italy. F.T., A. Mura, A. Cofano, F.Z., M.C., G.P., C.P., R.S., A.A., A. Migliorini, L.A., F.A., A. Cicchetti, B.M.D., D.G., A. Moirano, M.L.M., R.N., P.S., G.S., S.S. and D.T. acknowledge the support from the ASI–INAF grant no. 2016-23-H.0 plus addendum no. 2016-23-H.2-2021. C.R.G. was supported in part by the NASA grants NNN13D485T and 80NSSC19K0611. Support for S.J.B. and the Juno project is provided under the NASA grant NNM06AA75C to the Southwest Research Institute. J.I.L. acknowledges support from the Juno mission through subcontract D99069MO from the Southwest Research Institute. C.J.H. acknowledges support from the Juno project through a subcontract from the Southwest Research Institute. T.A.N. was supported by the NASA grant 80NM0018F0612. Support from the Juno Science and Operations Teams is gratefully acknowledged.The JIRAM instrument is funded by the Italian Space Agency (Agenzia Spaziale Italiana (ASI)). It was built by Selex ES under the leadership of the Italian National Institute for Astrophysics (Istituto Nazionale di Astrofisica (INAF))–Institute for Space Astrophysics and Planetology (Istituto di Astrofisica e Planetologia Spaziali (IAPS)), Rome, Italy. JIRAM is operated by INAF–IAPS, Rome, Italy. F.T., A. Mura, A. Cofano, F.Z., M.C., G.P., C.P., R.S., A.A., A. Migliorini, L.A., F.A., A. Cicchetti, B.M.D., D.G., A. Moirano, M.L.M., R.N., P.S., G.S., S.S. and D.T. acknowledge the support from the ASI–INAF grant no. 2016-23-H.0 plus addendum no. 2016-23-H.2-2021. C.R.G. was supported in part by the NASA grants NNN13D485T and 80NSSC19K0611. Support for S.J.B. and the Juno project is provided under the NASA grant NNM06AA75C to the Southwest Research Institute. J.I.L. acknowledges support from the Juno mission through subcontract D99069MO from the Southwest Research Institute. C.J.H. acknowledges support from the Juno project through a subcontract from the Southwest Research Institute. T.A.N. was supported by the NASA grant 80NM0018F0612. Support from the Juno Science and Operations Teams is gratefully acknowledged.
Schenk, P. M. Thickness constraints on the icy shells of the Galilean satellites from a comparison of crater shapes. Nature 417, 419–421 (2002). DOI: 10.1038/417419a
Saur, J. et al. The search for a subsurface ocean in Ganymede with Hubble Space Telescope observations of its auroral ovals. J. Geophys. Res. Space Phys. 120, 1715–1737 (2015). DOI: 10.1002/2014JA020778
Carlson, R. W. et al. Near-infrared mapping spectrometer experiment on Galileo. Space Sci. Rev. 60, 457–502 (1992). DOI: 10.1007/BF00216865
Stephan, K., Hibbitts, C. A. & Jaumann, R. H2O-ice particle size variations across Ganymede’s and Callisto’s surface. Icarus 337, 113440 (2020). DOI: 10.1016/j.icarus.2019.113440
McCord, T. B. et al. Hydrated salt minerals on Ganymede’s surface: evidence of an ocean below. Science 292, 1523–1525 (2001). DOI: 10.1126/science.1059916
McCord, T. B. et al. Hydrated salt minerals on Europa’s surface from the Galileo near-infrared mapping spectrometer (NIMS) investigation. J. Geophys. Res. 104, 11827–11852 (1999). DOI: 10.1029/1999JE900005
Ligier, N. et al. VLT/SINFONI observations of Europa: new insights into the surface composition. Astron. J. 151, 163 (2016). DOI: 10.3847/0004-6256/151/6/163
Ligier, N. et al. Surface composition and properties of Ganymede: updates from ground-based observations with the near-infrared imaging spectrometer SINFONI/VLT/ESO. Icarus 333, 496–515 (2019). DOI: 10.1016/j.icarus.2019.06.013
Trumbo, S. K., Brown, M. E. & Hand, K. P. Sodium chloride on the surface of Europa. Sci. Adv. 5, aaw7123 (2019). DOI: 10.1126/sciadv.aaw7123
Adriani, A. et al. JIRAM, the Jovian Infrared Auroral Mapper. Space Sci. Rev. 213, 393–446 (2017). DOI: 10.1007/s11214-014-0094-y
Bolton, S. J. et al. The Juno mission. Science 356, 821–825 (2017). DOI: 10.1126/science.aal2108
Hansen, C. J. et al. Juno’s close encounter with Ganymede—An overview. Geophys. Res. Lett. 49, e2022GL099285 (2022). DOI: 10.1029/2022GL099285
Mura, A. et al. Infrared observations of Ganymede from the Jovian InfraRed Auroral Mapper on Juno. J. Geophys. Res. Planets 125, e2020JE006508 (2020). DOI: 10.1029/2020JE006508
Wang, F. et al. Laboratory and field characterization of visible to near-infrared spectral reflectance of nitrate minerals from the Atacama Desert, Chile, and implications for Mars. Am. Mineral. 103, 197–206 (2018). DOI: 10.2138/am-2018-6141
De Angelis, S. et al. High temperature VIS-IR Spectroscopy of NH4 phyllosilicates. J. Geophys. Res. Planets 126, e06696 (2021). DOI: 10.1029/2020JE006696
Berg, B. L. et al. Reflectance spectroscopy (0.35–8 µm) of ammonium-bearing minerals and qualitative comparison to Ceres-like asteroids. Icarus 265, 218–237 (2016). DOI: 10.1016/j.icarus.2015.10.028
Ehlmann, B. L. et al. Ambient and cold-temperature infrared spectra and XRD patterns of ammoniated phyllosilicates and carbonaceous chondrite meteorites relevant to Ceres and other solar system bodies. Meteorit. Planet. Sci. 53, 1884–1901 (2018). DOI: 10.1111/maps.13103
Mastrapa, R. M. et al. Optical constants of amorphous and crystalline H2O-ice: 2.5–22 μm (4000–455 cm−1) optical constants of H2O-ice. Astrophys. J. 701, 1347–1356 (2009). DOI: 10.1088/0004-637X/701/2/1347
McCord, T. B. et al. Organics and other molecules in the surfaces of Callisto and Ganymede. Science 278, 271–275 (1997). DOI: 10.1126/science.278.5336.271
Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts (John Wiley & Sons, 2004); https://isbnsearch.org/isbn/978-0-470-09307-8
Moroz, L. V. et al. Natural solid bitumens as possible analogs for cometary and asteroid organics: 1. Reflectance spectroscopy of pure bitumens. Icarus 134, 253–268 (1998). DOI: 10.1006/icar.1998.5955
Ciarniello, M. et al. VIS-IR spectroscopy of mixtures of water ice, organic matter, and opaque mineral in support of small body remote sensing observations. Minerals 11, 1222 (2021). DOI: 10.3390/min11111222
Chaban, G. M. et al. Carbon dioxide on planetary bodies: theoretical and experimental studies of molecular complexes. Icarus 187, 592–599 (2007). DOI: 10.1016/j.icarus.2006.10.010
Carlson, R. W. et al. Hydrogen peroxide on the surface of Europa. Science 283, 2062–2064 (1999). DOI: 10.1126/science.283.5410.2062
Carlson, R. W., Johnson, R. E. & Anderson, M. S. Sulfuric acid on Europa and the radiolytic sulfur cycle. Science 286, 97–99 (1999). DOI: 10.1126/science.286.5437.97
King, O. & Fletcher, L. N. Global modelling of Ganymede’s surface composition: near-IR mapping from VLT/SPHERE. J. Geophys. Res. Planets 127, e2022JE007323 (2022). DOI: 10.1029/2022JE007323
Trumbo, S. K. et al. Hydrogen peroxide at the poles of Ganymede. Sci. Adv. 9, eadg3724 (2023). DOI: 10.1126/sciadv.adg3724
Nash, D. B. & Betts, B. H. Laboratory infrared spectra (2.3–23 µm) of SO2 phases: applications to Io surface analysis. Icarus 117, 402–419 (1995). DOI: 10.1006/icar.1995.1165
Douté, S. et al. Mapping SO2 frost on Io by the modeling of NIMS hyperspectral images. Icarus 149, 107–132 (2001). DOI: 10.1006/icar.2000.6513
Hibbitts, C. A., McCord, T. B. & Hansen, G. B. Distributions of CO2 and SO2 on the surface of Callisto. J. Geophys. Res. 105, 22,541–22,557 (2000). DOI: 10.1029/1999JE001101
Collins, G. C. et al. Global geologic map of Ganymede: Scientific Investigations Map 3237 (US Geological Survey, 2013); 10.3133/sim3237
Hibbitts, C. A. et al. Carbon dioxide on Ganymede. J. Geophys. Res. 108, 5036–5058 (2003). DOI: 10.1029/2002JE001956
Aponte, J. C. et al. Analyses of aliphatic aldehydes and ketones in carbonaceous chondrites. ACS Earth Space Chem. 3, 463–472 (2019). DOI: 10.1021/acsearthspacechem.9b00006
Khawaja, N. et al. Low-mass nitrogen-, oxygen-bearing, and aromatic compounds in Enceladean ice grains. Mon. Not. R. Astron. Soc. 489, 5231–5243 (2019). DOI: 10.1093/mnras/stz2280
Grossmann, Y. et al. Aliphatic aldehydes in the Earth’s crust—Remains of prebiotic chemistry? Life 12, 925 (2022). DOI: 10.3390/life12070925
Liuzzo, L. et al. Variability in the energetic electron bombardment of Ganymede. J. Geophys. Res. Space Phys. 125, e28347 (2020). DOI: 10.1029/2020JA028347
Poppe, A. R. et al. Thermal and energetic ion dynamics in Ganymede’s magnetosphere. J. Geophys. Res. Space Phys. 123, 4614–4637 (2018). DOI: 10.1029/2018JA025312
Plainaki, C. et al. Kinetic simulations of the Jovian energetic ion circulation around Ganymede. Astrophys. J. 900, 74 (2020). DOI: 10.3847/1538-4357/aba94c
Postberg, F. et al. Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459, 1098–1101 (2009). DOI: 10.1038/nature08046
De Sanctis, M. C. et al. Fresh emplacement of hydrated sodium chloride on Ceres from ascending salty fluids. Nat. Astron. 4, 786–793 (2020). DOI: 10.1038/s41550-020-1138-8
Kirk, R. L. & Stevenson, D. J. Thermal evolution of a differentiated Ganymede and implications for surface features. Icarus 69, 91–134 (1987). DOI: 10.1016/0019-1035(87)90009-1
Kalousová, K. et al. Two-phase convection in Ganymede’s high-pressure ice layer—Implications for its geological evolution. Icarus 299, 133–147 (2018). DOI: 10.1016/j.icarus.2017.07.018
Sharp, Z. D. et al. The chlorine isotope composition of chondrites and Earth. Geochim. Cosmochim. Acta 107, 189–204 (2013). DOI: 10.1016/j.gca.2013.01.003
Lellouch, E. et al. Volcanically emitted sodium chloride as a source for Io’s neutral clouds and plasma torus. Nature 421, 45–47 (2003). DOI: 10.1038/nature01292
Glein, C. R. & Shock, E. L. Sodium chloride as a geophysical probe of a subsurface ocean on Enceladus. Geophys. Res. Lett. 37, L09204 (2010). DOI: 10.1029/2010GL042446
Molyneux, P. M. et al. Ganymede’s UV reflectance from Juno-UVS data. Geophys. Res. Lett. 49, e2022GL099532 (2022). DOI: 10.1029/2022GL099532
Poch, O. et al. Ammonium salts are a reservoir of nitrogen on a cometary nucleus and possibly on some asteroids. Science 367, eaaw7462 (2020). DOI: 10.1126/science.aaw7462
De Sanctis, M. C. et al. Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres. Nature 528, 241–244 (2015). DOI: 10.1038/nature16172
Waite, J. H. et al. Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes. Science 356, 155–159 (2017). DOI: 10.1126/science.aai8703
Mandt, K. E. et al. Protosolar ammonia as the unique source of Titan’s nitrogen. Astrophys. J. Lett. 788, L24 (2014). DOI: 10.1088/2041-8205/788/2/L24
Pizzarello, S. & Williams, L. B. Ammonia in the early Solar System: an account from carbonaceous chondrites. Astrophys. J. 749, 161 (2012). DOI: 10.1088/0004-637X/749/2/161
Miller, K. E. et al. Contributions from organic nitrogen to Titan’s N2 atmosphere: new insights from cometary and chondritic data. Astrophys. J. 871, 59 (2019). DOI: 10.3847/1538-4357/aaf561
Dello Russo, N. et al. Emerging trends and a comet taxonomy based on the volatile chemistry measured in thirty comets with high-resolution infrared spectroscopy between 1997 and 2013. Icarus 278, 301–332 (2016). DOI: 10.1016/j.icarus.2016.05.039
Fujiya, W. et al. Migration of D-type asteroids from the outer Solar System inferred from carbonate in meteorites. Nat. Astron. 3, 910–915 (2019). DOI: 10.1038/s41550-019-0801-4
Melwani Daswani, M. et al. A metamorphic origin for Europa’s ocean. Geophys. Res. Lett. 48, e2021GL094143 (2021). DOI: 10.1029/2021GL094143
Gomez Casajus, L. et al. Gravity field of Ganymede after the Juno Extended Mission. Geophys. Res. Lett. 49, e2022GL099475 (2022). DOI: 10.1029/2022GL099475
MODTRAN extraterrestrial solar irradiance (National Renewable Energy Laboratory) https://www.nrel.gov/grid/solar-resource/spectra.html#paneld10e138_1
Adriani, A. et al. Juno’s Earth flyby: the Jovian InfraRed Auroral Mapper preliminary results. Astrophys. Space Sci. 361, 272 (2016). DOI: 10.1007/s10509-016-2842-9
Clark, R. N. & Roush, T. L. Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications. J. Geophys. Res. 89, 6329–6340 (1984). DOI: 10.1029/JB089iB07p06329
Heinz D., Chang C.-I. & Althouse, M. Fully constrained least-squares based linear unmixing. In IEEE 1999 International Geoscience and Remote Sensing Symposium (Ed. Stein, T. I.) 1401–1403 (1999); 10.1109/IGARSS.1999.774644
Spade, D. A. in Principles and Methods for Data Science Vol. 43 (eds Srinivasa Rao, A. S. R. and Rao, C. R.) 1–66 (Elsevier North-Holland, 2020).
Acton, C. H. et al. A look towards the future in the handling of space science mission geometry. Planet. Space Sci. 150, 9–12 (2018). DOI: 10.1016/j.pss.2017.02.013
Zimmer, K. et al. SUPCRTBL: a revised and extended thermodynamic dataset and software package of SUPCRT92. Comput. Geosci. 90, 97–111 (2016). DOI: 10.1016/j.cageo.2016.02.013
Tosi, F. Data package for the Nature Astronomy paper: ‘Salts and organics on Ganymede’s surface from infrared observations by Juno/JIRAM’ (Tosi et al.). figshare 10.6084/m9.figshare.21710468 (2023).