Geophysics; Geochemistry and Petrology; Earth and Planetary Sciences (miscellaneous); Space and Planetary Science
Abstract :
[en] In this work, we present the detection of CH4 and (Formula presented.) emissions in the equatorial atmosphere of Jupiter as two well-separated layers located, respectively, at tangent altitudes of about 200 and 500–600 km above the 1-bar level using the observations of the Jovian InfraRed Auroral Mapper (JIRAM), on board Juno. This provides details of the vertical distribution of (Formula presented.) retrieving its Volume Mixing Ratio (VMR), concentration, and temperature. The thermal profile obtained from (Formula presented.) shows a peak of 600–800 K at about 550 km, with lower values than the ones reported in Seiff et al. (1998), https://doi.org/10.1029/98JE01766 above 500 km using VMR and temperature as free parameters and above 650 km when VMR is kept fixed with that model in the retrieval procedure. The observed deviations from the Galileo's profile could potentially point to significant variability in the exospheric temperature with time. We suggest that vertically propagating waves are the most likely explanation for the observed VMR and temperature variations in the JIRAM data. Other possible phenomena could explain the observed evidence, for example, dynamic activity driving chemical species from lower layers toward the upper atmosphere, like the advection-diffusion processes, or precipitation by soft electrons, although better modeling is required to test these hypothesis. The characterization of CH4 and (Formula presented.) species, simultaneously observed by JIRAM, offers the opportunity for better constraining atmospheric models of Jupiter at equatorial latitudes.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Migliorini, A. ; IAPS-INAF, Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Dinelli, B.M. ; CNR-ISAC, Bologna, Italy
Castagnoli, C. ; IAPS-INAF, Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy ; CNR-ISAC, Bologna, Italy ; University of Tor Vergata, Rome, Italy
Moriconi, M.L. ; IAPS-INAF, Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Altieri, F. ; IAPS-INAF, Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Atreya, S.; Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, United States
Adriani, A. ; IAPS-INAF, Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Mura, A. ; IAPS-INAF, Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Tosi, F. ; IAPS-INAF, Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Moirano, Alessandro ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP) ; IAPS-INAF, Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Piccioni, G.; IAPS-INAF, Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Grassi, D. ; IAPS-INAF, Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Sordini, R. ; IAPS-INAF, Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Noschese, R. ; IAPS-INAF, Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Cicchetti, A. ; IAPS-INAF, Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
Bolton, S.J.; Southwest Research Institute, San Antonio, United States
The JIRAM project is funded by the Italian Space Agency (ASI). In particular, this work has been developed under the Agreement 2016‐23‐H.0. Open Access Funding provided by Istituto nazionale di astrofisica within the CRUI‐CARE Agreement.The JIRAM project is funded by the Italian Space Agency (ASI). In particular, this work has been developed under the Agreement 2016-23-H.0. Open Access Funding provided by Istituto nazionale di astrofisica within the CRUI-CARE Agreement.
Acton, C. H. (1996). Ancillary data services of NASA's navigation and ancillary information facility. Planetary and Space Science, 44(1), 65–70. https://doi.org/10.1016/0032-0633(95)00107-7
Adriani, A., Filacchione, G., Di Iorio, T., Turrini, D., Noschese, R., Cicchetti, A., et al. (2017). JIRAM, the Jovian infrared auroral mapper. Space Science Reviews, 213(1–4), 393–446. https://doi.org/10.1007/s11214-014-0094-y
Adriani, A., Mura, A., Moriconi, M., Dinelli, B. M., Fabiano, F., Altieri, F., et al. (2017). Preliminary JIRAM results from Juno polar observations: 2. Analysis of the Jupiter southern H3+ emissions and comparison with the North aurora. Geophysical Research Letters, 44(10), 4633–4640. https://doi.org/10.1002/2017GRL072905
Altieri, F., Dinelli, B., Migliorini, A., Moriconi, M. L., Sindoni, G., Adriani, A., et al. (2016). Mapping of hydrocarbons and H3+ emissions at Jupiter's north pole using Galileo/NIMS data. Geophysical Research Letters, 43(22), 11558–11566. https://doi.org/10.1002/2016GL070787
Atreya, S. K. (1987). Atmospheres and ionospheres of the outer planets and their satellites (pp. 47–48). Springer.
Ballester, G. E., Miller, S., Tennyson, J., Trafton, L., & Geballe, T. (1994). Latitudinal temperature variations of Jovian H3+. Icarus, 107(1), 189–194. https://doi.org/10.1006/icar.1994.1015
Bonfond, B., Gladstone, G., Grodent, D., Greathause, T., Versteeg, M., Hue, V., et al. (2017). Morphology of the UV aurorae Jupiter during Juno's first perijove observations. Geophysical Research Letters, 44(10), 4463–4471. https://doi.org/10.1002/2017GL073114
Bougher, S., Waite, J., Majeed, T., & Gladstone, G. (2005). Jupiter Thermospheric General Circulation Model (JTGCM): Global structure and dynamics driven by auroral and Joule heating. Journal of Geophysical Research, 110(E4), E04008. https://doi.org/10.1029/2003je002230
Caldwell, J., Halthore, R., Orton, G., & Berstralh, J. (1988). Infrared polar brightenings on Jupiter VI. Spatial properties of methane emission. Icarus, 74(2), 331–339. https://doi.org/10.1016/0019-1035(88)90045-0
Caldwell, J., Tokunags, A., & Orton, G. (1983). Further observations of 8-μm polar brightenings of Jupiter. Icarus, 53(1), 133–140. https://doi.org/10.1016/0019-1035(83)90026-x
Carlotti, M. (1988). Global-fit approach to the analysis of limb-scanning atmospheric measurements. Applied Optics, 27(15), 3250–3254. https://doi.org/10.1364/ao.27.003250
Clarke, J., Ajello, J., Ballester, G., Ben Jaffel, L., Connerney, J., Gerard, J. C., et al. (2002). Ultraviolet emissions from the magnetic footprints of Io, Ganymede, and Europa on Jupiter. Nature, 415(6875), 997–1000. https://doi.org/10.1038/415997a
Connerney, J., Baron, R., Satoh, T., & Owen, T. (1993). Images of excited H3+ at the foot of the Io flux tube in Jupiter's atmosphere. Science, 262(5136), 1035–1038. https://doi.org/10.1126/science.262.5136.1035
Connerney, J., Timmins, S., Oliversen, R., Cao, H., Yadav, R. K., Stevenson, D. J., et al. (2022). A new model of Jupiter's magnetic field at the completion of Juno's prime mission. Journal of Geophysical Research: Planets, 127(5), e2021JE007055. https://doi.org/10.1029/2021JE007138
Cosentino, R., Morales-Juberias, R., Greathouse, T., Orton, G., Johnson, P., Fletcher, L., & Simon, A. (2017). New observations and modeling of Jupiter's quasi-quadrennial oscillation. Journal of Geophysical Research: Planets, 122(12), 2719–2744. https://doi.org/10.1002/2017JE005342
Dinelli, B. (2021). Ch4 and H3+ retrieval results [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.5658387
Dinelli, B., Adriani, A., Mura, A., Altieri, F., Migliorini, A., & Moriconi, M. L. (2019). Juno/JIRAM's view of Jupiter's H3+ emissions. Philosophical Transaction of the Royal Society A, 377(2154), 20180406. https://doi.org/10.1098/rsta.2018.0406
Drossart, P., Bezard, B., Atreya, S., Bishop, J., Waite, J. H., & Boice, D. (1993). Thermal profiles in the auroral regions of Jupiter. Journal of Geophysical Research, 98(E10), 18803–18812. https://doi.org/10.1029/93JE01801
Drossart, P., Maillard, J.-P., Cladwell, S., Kim, S. J., Watson, J. K. G., Majewski, W. A., et al. (1989). Detection of the H3+ on Jupiter. Nature, 340(6234), 539–541. https://doi.org/10.1038/340539a0
Gérard, J.-C., Mura, A., Bonfond, B., Gladstone, G., Adriani, A., Hue, V., et al. (2018). Concurrent ultraviolet and infrared observations of the north Jovian aurora during Juno's first perijove. Icarus, 312, 145–156. https://doi.org/10.1016/j.icarus.2018.04.020
Giles, R., Fletcher, L., Irwin, P., Melin, H., & Stallard, T. S. (2016). Detection of H3+ auroral emission in the Jupiter's 5-micron window. Astronomy and Astrophysics, 589, A67. https://doi.org/10.1051/0004-6361/201628170
Grodent, D., Waite, J. J., & Gérard, J. (2001). A self-consistent model of the Jovian auroral thermal structure. Journal of Geophysical Research, 106(A7), 12933–12952. https://doi.org/10.1029/2000JA900129
Hunten, D. M., & Dessler, A. J. (1977). Soft electrons as a possible heat source for Jupiter's thermosphere. Planetary and Space Science, 25(9), 817–821. https://doi.org/10.1016/0032-0633(77)90035-6
Kim, S., Caldwell, J., Rivolo, A., Wagener, R., & Orton, G. (1985). Infrared polar brightening on Jupiter III. Spectrometry from the Voyager 1 IRIS experiment. Icarus, 64(2), 233–248. https://doi.org/10.1016/0019-1035(85)90088-0
Kim, S., Drossart, P., Caldwell, J., Maillard, J. P., Herbst, T., & Shure, M. (1991). Images of aurorae on Jupiter from H3+ emission at 4 μm. Nature, 353(6344), 536–539. https://doi.org/10.1038/353536a0
Kim, S., Geballe, T., Seo, H., & Jim, J. (2009). Jupiter's hydrocarbon polar brightening: Discovery of 3-micron line emission from south polar CH4, C2H2 and C2H6. Icarus, 202(1), 354–357. https://doi.org/10.1016/j.icarus.2009.03.020
Kim, S., Sim, C., Ho, J., Geballe, T. R., Yung, Y. L., Miller, S., & Kim, Y. H. (2015). Hot CH4 in the polar regions of Jupiter. Icarus, 257, 217–220. https://doi.org/10.1016/j.icarus.2015.05.008
Kim, S., Sim, C., Sohn, M., & Moses, J. (2014). CH4 mixing ratios at microbar pressure levels of Jupiter a constrained by 3-micron ISO data. Icarus, 237, 42–51. https://doi.org/10.1016/j.icarus.2014.04.023
Kita, H., Fujisawa, S., Tao, C., Kagitani, M., Sakanoi, T., & Kasaba, Y. (2018). Horizontal and vertical structures of Jovian infrared aurora: Observations using Subaru IRCS with adaptive optics. Icarus, 313, 93–106. https://doi.org/10.1016/j.icarus.2018.05.002
Koskinen, T., Aylaward, A., & Miller, S. (2007). A stability limit for the atmospheres of giant extrasolar planets. Nature, 412(7171), 891–848. https://doi.org/10.1038/nature06378
Li, C., Ingersoll, A., Bolton, S., Levin, S., Janssen, M., Atreya, S., et al. (2020). The water abundance in Jupiter's equatorial zone. Nature Astronomy, 4(6), 609–616. https://doi.org/10.1038/s41550-020-1009-3
Li, C., Ingersoll, A., Janssen, M., Levin, S., Bolton, S., Adumitroaie, V., et al. (2017). The distribution of ammonia on Jupiter from a preliminary inversion of Juno microwave radiometer data. Geophysical Research Letters, 44(11), 5317–5325. https://doi.org/10.1002/2017GL073159
Lindsay, C., & McCall, B. (2001). Comprehensive evaluation and compilation of H3+ spectroscopy. Journal of Molecular Spectroscopy, 210(1), 60–83. https://doi.org/10.1006/jmsp.2001.8444
Lystrup, M., Miller, S., Dello Russo, N., Vervack, R., & Stallard, T. (2008). First vertical ion density profile in Jupiter's auroral atmosphere: Direct observations using the Keck II telescope. The Astrophysical Journal, 677(1), 790–797. https://doi.org/10.1086/529509
Marten, A., De Bergh, C., Owen, T., Gautier, D., Maillard, J., Drossart, P., et al. (1994). Four micron high-resolution spectra of jupiter in the North equatorial belt: H3+ emissions and the 12C/13C ratio. Planetary and Space Science, 42(5), 391–399. https://doi.org/10.1016/0032-0633(94)90128-7
Melin, H., Miller, S., Stallard, T., & Grodent, D. (2005). Non-LTE effects on H3+ emission in the Jovian upper atmosphere. Icarus, 178(1), 97–103. https://doi.org/10.1016/j.icarus.2005.04.016
Melin, H., Stallard, T., O’Donoghue, J., Badman, S., Miller, S., & Blake, J. S. D. (2014). On the anticorrelation between H3+ temperature and density in giant planet ionospheres. Monthly Notices of the Royal Astronomical Society, 438(2), 1611–1617. https://doi.org/10.1093/mnras/stt2299
Migliorini, A., Dinelli, B., Moriconi, M., Altieri, F., Adriani, A., Mura, A., et al. (2019). H3+ characteristics in the Jupiter atmosphere as observed at limb with Juno/JIRAM. Icarus, 329, 132–139. https://doi.org/10.1016/j.icarus.2019.04.003
Miller, S., Achilleos, N., Ballester, G. E., Lam, H. A., Tennyson, J., Geballe, T. R., & Trafton, L. M. (1997). Mid-to-low latitude H3+ emission from Jupiter. Icarus, 130(1), 57–67. https://doi.org/10.1006/icar.1997.5813
Miller, S., Joseph, R. D., & Tennyson, J. (1990). Infrared emissions of H3+ in the atmosphere of Jupiter in the 2.1 and 4.0 micron region. The Astrophysical Journal Letters, 360, L55. https://doi.org/10.1086/185811
Miller, S., Tennyson, J., Geballe, T. R., & Stallard, T. (2020). Thirty years of H3+ astronomy. Reviews of Modern Physics, 92(3), 035003. https://doi.org/10.1103/RevModPhys.92.035003
Moore, L., Melin, H., O’Donoghue, J., Stallard, T. S., Moses, J. I., Galand, M., et al. (2019). Modelling H3+ in planetary atmospheres: Effects of vertical gradients on observed quantities. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 377(2154), 20190067. https://doi.org/10.1098/rsta.2019.0067
Moriconi, M., Adriani, A., Dinelli, B., Fabiano, F., Altieri, F., Tosi, F., et al. (2017). Preliminary JIRAM results from Juno polar observations: 3. Evidence of diffuse methane presence in the Jupiter auroral regions. Geophysical Research Letters, 44(10), 4641–4648. https://doi.org/10.1002/2017GL073592
Mura, A., Adriani, A., Connerney, J. E. P., Bolton, S., Altieri, F., Bagenal, F., et al. (2018). Juno observations of spot structures and a split tail in Io-induced aurorae on Jupiter. Science, 361(6404), 774–777. https://doi.org/10.1126/science.aat1450
Mura, A., Adriani, A., Altieri, F., Connerney, J. E. P., Bolton, S. J., Moriconi, M. L., et al. (2017). Infrared observations of Jovian aurora from Juno's first orbit: Main oval and satellite footprints. Geophysical Research Letters, 44(11), 5308–5316. https://doi.org/10.1022/2017GRL072954
Noschese, R., & Adriani, A. (2017). Juno Jupiter JIRAM raw data archive v1.0. NASA Planetary Data System. https://doi.org/10.17189/FAY5-DE13
O’Donoghue, J., Moore, L., Bhakyapaibul, T., Melin, H., Stallard, T., Connerney, J., & Tao, C. (2021). Global upper-atmospheric heating on Jupiter by the pola aurorae heating of Jupiter's upper atmosphere above the great red spot. Nature, 596(7870), 54–67. https://doi.org/10.1038/s41596-021-03706-w
O’Donoghue, J., Moore, L., Stallard, T., & Melin, H. (2016). Heating of Jupiter's upper atmosphere above the great red spot. Nature, 536(7615), 190–192. https://doi.org/10.1038/nature18940
Ray, L., Lorch, C., O’Donoghue, J., Yates, J., Badman, S., Smith, C., & Stallard, T. (2019). Why is the H3+ hot spot above Jupiter's great red spot so hot? Philosophical Transaction of the Royal Society A, 377(2154), 20180407. https://doi.org/10.1098/rsta.2018.0407
Rodgers, C. D. (2000). Inverse methods for atmospheric sounding. World Scientific. https://doi.org/10.1142/3171
Sada, P., Jennings, D., Romani, P., Bjoraker, G., Flasar, F., Kunde, V., et al. (2003). Transient IR phenomena observed by Cassini/CIRS in Jupiter's auroral regions. Bulletin of the American Astronomical Society, 35, 402.
Sànchez-Lòpez, A., Lòpez-Puertas, M., Garcìa-Comas, M., Funke, B., Fouchet, T., & Snellen, I. (2022). The CH4 abundance in Jupiter's upper atmosphere. Astronomy and Astrophysics, 662, A91. https://doi.org/10.1051/0004-6361/202141933
Satoh, T., & Connerney, J. (1999). Jupiter H3+ emissions viewed in corrected Jovi magnetic coordinates. Icarus, 141(2), 236–252. https://doi.org/10.1006/icar.1999.6173
Seiff, A., Kirk, D. B., Knight, T. C. D., Young, R. E., Mihalov, J. D., Young, L. A., et al. (1998). Thermal structure of Jupiter's atmosphere near the edge of a 5-μm hot spot in the north equatorial belt. Journal of Geophysical Research, 103(E10), 22857–22889. https://doi.org/10.1029/98JE01766
Sinclair, J., Orton, G., Fernandes, J., Kasaba, Y., Sato, T. M., Fujiyoshi, T., et al. (2019). A brightening of Jupiter's auroral 7.8-μm CH4 emission during a solar-wind compression. Nature Astronomy, 3(7), 607–613. https://doi.org/10.1038/s41550-019-0743-x
Sinclair, J. A., Orton, G., Greathouse, T., Fletcher, L., Tao, C., Gladstone, G. R., et al. (2017). Independent evolution of stratospheric temperatures in Jupiter's northern and southern auroral regions from 2014 to 2016. Geophysical Research Letters, 44(11), 5345–5354. https://doi.org/10.1002/2017GL073529
Stallard, T., Burrell, A., Melin, H., Fletcher, L. N., Miller, S., Moore, L., et al. (2018). Identification of Jupiter's magnetic equator within H3+ ionospheric emission. Nature Astronomy, 2(10), 773–777. https://doi.org/10.1038/s41550-018-0523-z
Stallard, T., Melin, H., Miller, S., Badman, S. V., Baines, K. H., Brown, R. H., et al. (2015). Cassini vims observations of H3+ emission on the nightside of Jupiter. Journal of Geophysical Research: Space Physics, 120(8), 6948–6973. https://doi.org/10.1002/2015JA021097
Stallard, T., Melin, H., Miller, S., Moore, L., O'Donoghue, J., Connerney, J., et al. (2017). The great cold spot in Jupiter's upper atmosphere. Geophysical Research Letters, 44(7), 3000–3008. https://doi.org/10.1002/2016GL071956
Tao, C., Badman, S., & Fujimoto, M. (2011). UV and IR auroral emission model for the outer planets: Jupiter and Saturn comparison. Icarus, 213(2), 581–592. https://doi.org/10.1016/j.icarus.2011.04.001
Uno, T., Yasaba, Y., Tao, C., Sakanoi, T., Kagitani, M., Fujisawa, S., et al. (2014). Vertical emissivity profiles of Jupiter's northern H3+ and h2 infrared auroras observed by Subaru/IRCS. Journal of Geophysical Research: Space Physics, 119(12), 10219–10241. https://doi.org/10.1002/2014JA020454