Juno Mission; Jupiter dynamo; Jupiter interior; Jupiter planetary magnetic field; magnetic field generation; secular variation; Geophysics; Geochemistry and Petrology; Earth and Planetary Sciences (miscellaneous); Space and Planetary Science
Abstract :
[en] A spherical harmonic model of the magnetic field of Jupiter is obtained from vector magnetic field observations acquired by the Juno spacecraft during 32 of its first 33 polar orbits. These Prime Mission orbits sample Jupiter's magnetic field nearly uniformly in longitude (∼11° separation) as measured at equator crossing. The planetary magnetic field is represented with a degree 30 spherical harmonic and the external field is approximated near the origin with a simple external spherical harmonic of degree 1. Partial solution of the underdetermined inverse problem using generalized inverse techniques yields a model (“JRM33”) of the planetary magnetic field with spherical harmonic coefficients reasonably well determined through degree and order 13. Useful information regarding the field extends through degree 18, well fit by a Lowes' spectrum with a dynamo core radius of 0.81 Rj, presumably the outer radius of the convective metallic hydrogen region. This new model provides a most detailed view of a planetary dynamo and evidence of advection of the magnetic field by deep zonal winds in the vicinity of the Great Blue Spot (GBS), an isolated and intense patch of flux near Jupiter's equator. Comparison of the JRM33 and JRM09 models suggests secular variation of the field in the vicinity of the GBS during Juno's nearly 5 years of operation in orbit about Jupiter. The observed secular variation is consistent with the penetration of zonal winds to a depth of ∼3,500 km where a flow velocity of ∼0.04 ms−1 is required to match the observations.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Connerney, J.E.P. ; Space Research Corporation, Annapolis, United States ; NASA Goddard Space Flight Center, Greenbelt, United States
Timmins, S.; NASA Goddard Space Flight Center, Greenbelt, United States ; ADNET Systems, Inc., Bethesda, United States
Oliversen, R.J. ; NASA Goddard Space Flight Center, Greenbelt, United States
Espley, J.R. ; NASA Goddard Space Flight Center, Greenbelt, United States
Joergensen, J.L.; Technical University of Denmark (DTU), Kongens Lyngby, Denmark
Kotsiaros, S. ; Technical University of Denmark (DTU), Kongens Lyngby, Denmark
Joergensen, P.S. ; Technical University of Denmark (DTU), Kongens Lyngby, Denmark
Merayo, J.M.G. ; Technical University of Denmark (DTU), Kongens Lyngby, Denmark
Herceg, M. ; Technical University of Denmark (DTU), Kongens Lyngby, Denmark
Bloxham, J. ; Harvard University, Cambridge, United States
Moore, K.M. ; California Institute of Technology, Pasadena, United States
Mura, A. ; INAF-IAPS, Rome, Italy
Moirano, Alessandro ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP) ; INAF-IAPS, Rome, Italy
Bolton, S.J. ; Southwest Research Institute, San Antonio, United States
Levin, S.M. ; California Institute of Technology, Pasadena, United States ; Jet Propulsion Laboratory (JPL), Pasadena, United States
We thank the project and support staff at the Jet Propulsion Laboratory (JPL), Lockheed Martin, and the Southwest Research Institute (SWRI) for the design, implementation, and operation of the Juno spacecraft. The Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration (80NM0018D0004), manages the Juno mission for the principal Investigator, S. Bolton, of SWRI. We especially thank Monte Kaelberer, Ever Guandique, and Paul Romani at GSFC and Carol Ladd at the Space Research Corporation for expert support. K. Moore acknowledges financial support via the 51 Pegasi b Fellowship from the the Heising-Simons Foundation. This research is supported by the Juno Project under NASA grant NNM06AAa75c to SWRI, and NASA grant NNN12AA01C to JPL/Caltech. The Juno mission is part of the New Frontiers Program managed at NASA's Marshall Space Flight Center in Huntsville, Alabama.We thank the project and support staff at the Jet Propulsion Laboratory (JPL), Lockheed Martin, and the Southwest Research Institute (SWRI) for the design, implementation, and operation of the Juno spacecraft. The Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration (80NM0018D0004), manages the Juno mission for the principal Investigator, S. Bolton, of SWRI. We especially thank Monte Kaelberer, Ever Guandique, and Paul Romani at GSFC and Carol Ladd at the Space Research Corporation for expert support. K. Moore acknowledges financial support via the 51 Pegasi b Fellowship from the the Heising‐Simons Foundation. This research is supported by the Juno Project under NASA grant NNM06AAa75c to SWRI, and NASA grant NNN12AA01C to JPL/Caltech. The Juno mission is part of the New Frontiers Program managed at NASA's Marshall Space Flight Center in Huntsville, Alabama.
Adriani, A., Filacchione, G., Di Iorio, T., Turrini, D., Noschese, R., Cicchetti, A., et al. (2017). JIRAM, the Jovian infrared auroral mapper. Space Science Reviews, 213, 393–446. https://doi.org/10.1007/s11214-014-0094-y
Backus, G., Parker, R., & Constable, C. (1996). Foundations of geomagnetism. Cambridge University Press.
Bolton, S. J., Adriani, A., Adumitroaie, V., Anderson, J., Atreya, S., et al. (2017). Jupiter's interior and deep atmosphere: The first close polar pass with the Juno spacecraft. Science, 356, 821–825. https://doi.org/10.1126/science.aal2108
Bolton, S. J., Lunine, J., Stevenson, D., Connerney, J. E. P., Levin, S., Owen, T. C., et al. (2017). The Juno mission. Space Science Reviews, 213, 5–37. https://doi.org/10.1007/s11214-017-0429-6
Bonfond, B., Hess, S., Gerard, J.-C., Grodent, D., Radioti, A., Chantry, V., et al. (2013). Evolution of the Io footprint brightness I: Far-UV observations. Planetary and Space Science, 88, 64–75. https://doi.org/10.1016/j.pss.2013.05.023
Bonfond, B., Saur, J., Grodent, D., Badman, S. V., Bisikalo, D., Shematovich, V., et al. (2017). The tails of the satellite auroral footprints at Jupiter. Journal of Geophysical Research: Space Physics, 122, 7985–7996. https://doi.org/10.1002/2017JA024370
Brygoo, S., Loubeyre, P., Millot, M., Rygg, J. R., Celliers, P. M., Eggert, J. H., et al. (2021). Evidence of hydrogen−helium immiscibility at Jupiter-interior conditions. Nature, 593, 517–521. https://doi.org/10.1038/s41586-021-03516-0
Cain, J. C., Wang, Z., Schmitz, D., & Meyer, J. (1989). The geomagnetic spectrum for 1980 and core-crustal separation. Geophysical Journal, 97, 443–447. https://doi.org/10.1111/j.1365-246x.1989.tb00514.x
Cao, H., & Stevenson, D. J. (2017). Zonal flow magnetic field interaction in the semi-conducting region of giant planets. Icarus, 296, 59–72. https://doi.org/10.1016/j.icarus.2017.05.015
Chapman, S., & Bartels, J. (1940). Geomagnetism (pp. 639–668). Oxford University Press.
Chulliat, A., Macmillan, S., Alken, P., Beggan, C., Nair, M., Hamilton, B., et al. (2015). The US/UK world magnetic model for 2015-2020: Technical report. National Geophysical Data Center, NOAA. https://doi.org/10.7289/V5TB14V7
Clarke, J. T., Ajello, J., Ballester, G. E., Jaffel, L. B., Connerney, J., Gérard, J. C., et. al. (2002). Ultraviolet emissions from the magnetic footprints of Io, Ganymede, and Europa on Jupiter. Nature, 415, 997–1000.
Connerney, J. E. P. (1981). The magnetic field of Jupiter: A generalized inverse approach. Journal of Geophysical Research, 86, 7679–7693. https://doi.org/10.1029/ja086ia09p07679
Connerney, J. E. P. (1993). Magnetic fields of the outer planets. Journal of Geophysical Research, 98, 18659–18679. https://doi.org/10.1029/93je00980
Connerney, J. E. P. (2015). Planetary magnetism. Volume 10: Planets and satellites. In G. Schubert, & T. Spohn (Eds.), Treatise in geophysics (Vol. 10.06, pp. 195–237). Elsevier. https://doi.org/10.1016/b978-0-444-53802-4.00171-8
Connerney, J. E. P. (2017). Juno fluxgate magnetometer calibrated data V1.0 [Data set]. NASA Planetary Data System. https://doi.org/10.17189/1519711
Connerney, J. E. P., & Acuña, M. H. (1982). Jovimagnetic secular variation. Nature, 297, 313–315. https://doi.org/10.1038/297313a0
Connerney, J. E. P., Acuña, M. H., Ness, N. F., & Satoh, T. (1998). New models of Jupiter's magnetic field constrained by the Io flux tube footprint. Journal of Geophysical Research, 103(A6), 11929–11939. https://doi.org/10.1029/97ja03726
Connerney, J. E. P., Acuña, M. H., & Ness, N. F. (1981). Modeling the Jovian current sheet and inner magnetosphere. Journal of Geophysical Research, 86, 8370–8384. https://doi.org/10.1029/ja086ia10p08370
Connerney, J. E. P., Acuña, M. H., & Ness, N. F. (1982). N.F. Voyager 1 assessment of Jupiter's planetary magnetic field. Journal of Geophysical Research, 86, 3623–3627. https://doi.org/10.1029/ja087ia05p03623
Connerney, J. E. P., Acuña, M. H., & Ness, N. F. (1996). Octupole model of Jupiter's magnetic field from Ulysses observations. Journal of Geophysical Research, 101, 27453–27458. https://doi.org/10.1029/96ja02869
Connerney, J. E. P., Baron, R., Satoh, T., & Owen, T. (1993). Images of excited H3+ at the foot of the Io flux tube in Jupiter's atmosphere. Science, 262, 1035–1038. https://doi.org/10.1126/science.262.5136.1035
Connerney, J. E. P., Benn, M., Bjarno, J. B., Denver, T., Espley, J., Jorgensen, J. L., et al. (2017). The Juno magnetic field investigation. Space Science Reviews, 213, 39–138. https://doi.org/10.1007/s11214-017-0334-z
Connerney, J. E. P., Kotsiaros, S., Oliversen, R. J., Espley, J. R., Joergensen, J. L., Joergensen, P. S., et al. (2018). A new model of Jupiter's magnetic field from Juno's first nine orbits. Geophysical Research Letters, 45, 2590–2596. https://doi.org/10.1002/2018GL077312
Connerney, J. E. P., Timmins, S., Herceg, M., & Joergensen, J. L. (2020). A Jovian magnetodisc model for the Juno era. Journal of Geophysical Research: Space Physics, 125, e2020JA028138. https://doi.org/10.1029/2020JA028138
Conway, R. G., & Stannard, D. (1972). Non-dipole terms in the magnetic fields of Jupiter and the Earth. Nature, 239, 142–143. https://doi.org/10.1038/physci239142a0
Dessler, A. J., & Hill, T. W. (1975). High order multipoles as a source of gross asymmetry in the distant Jovian magnetosphere. Geophysical Research Letters, 2, 567. https://doi.org/10.1029/gl002i012p00567
Dessler, A. J., & Hill, T. W. (1979). Jovian longitudinal control of Io-related radio emissions. The Astrophysical Journal, 227, 664. https://doi.org/10.1086/156777
Elphic, R. C., & Russell, C. T. (1978). On the apparent source depth of planetary magnetic fields. Geophysical Research Letters, 5, 211–214. https://doi.org/10.1029/gl005i003p00211
French, M., Becker, A., Lorenzen, W., Nettlemann, N., Bethkenhagen, M., Wicht, J., & Redmer, R. (2012). Ab initio simulations for material properties along the Jupiter adiabat. The Astrophysical Journal Supplement, 202(1), 5. https://doi.org/10.1088/0067-0049/202/1/5
Gastine, T., & Wicht, J. (2021). Stable stratification promotes multiple zonal jets in a turbulent Jovian dynamo model. Icarus, 368, 114514. https://doi.org/10.1016/j.icarus.2021.114514
Genova, F., & Aubier, M. G. (1985). Io-dependent sources of the Jovian decameter emission. Astronomy & Astrophysics, 150, 139–150.
Grodent, D., Bonfond, B., Ge ́rard, J.-C., Radioti, A., Gustin, J., Clarke, J. T., et al. (2008). Auroral evidence of a localized magnetic anomaly in Jupiter's northern hemisphere. Journal of Geophysical Research, 113, A09201. https://doi.org/10.1029/2008JA013185
Guillot, T., Miguel, Y., Militzer, B., Hubbard, W. B., Kaspi, Y., Galanti, E., et al. (2018). A suppression of differential rotation in Jupiter's deep interior. Nature, 555, 227–230. https://doi.org/10.1038/nature25775
Guillot, T., Stevenson, D. J., Hubbard, W. B., & Saumon, D. (2004). The interior of Jupiter, In F. Bagenal, T. Dowling, & W. McKinnon (Eds.), Jupiter: The planet, satellites and magnetosphere. Cambridge University Press.
Herceg, M., Jorgensen, P. S., Jorgensen, J. L., & Connerney, J. E. P. (2020). Thermo-elastic response of the Juno spacecraft's solar array/magnetometer boom and its applicability to improved magnetic field investigation. Earth and Space Science, 7, e2020EA001338. https://doi.org/10.1029/2020EA001338
Hess, S. L. G., Bonfond, B., Zarka, P., & Grodent, T. (2011). Model of the Jovian magnetic field topology constrained by the Io auroral emissions. Journal of Geophysical Research, 116, A05217. https://doi.org/10.1029/2010JA016262
Kaspi, Y., Galanti, E., Hubbard, W., Stevenson, D. J., Bolton, S. J., Less, L., et al. (2018). Jupiter's atmospheric jet streams extend thousands of kilometres deep. Nature, 555, 223–226. https://doi.org/10.1038/nature25793
Kotsiaros, S., Connerney, J. E. P., Clark, G., Allegrini, F., Gladstone, G. R., Kurth, W. S., et al. (2019). Birkeland currents in Jupiter's magnetosphere observed by the polar-orbiting Juno spacecraft. Nature Astronomy, 3, 904–909. https://doi.org/10.1038/s41550-019-0819-7
Kotsiaros, S., Connerney, J. E. P., & Martos, Y. (2020). Analysis of Eddy current generation on the Juno spacecraft in Jupiter's magnetosphere. Earth and Space Science, 7, e2019EA001061. https://doi.org/10.1029/2019EA001061
Lanczos, C. (1961). Linear differential operations (p. 564). D. Van Nostrand.
Langel, R. A., & Estes, R. H. (1982). A geomagnetic field spectrum. Geophysical Research Letters, 9, 250–253. https://doi.org/10.1029/gl009i004p00250
Langlais, B., Amit, H., Larnier, H., Thebault, E., & Mocquet, A. (2014). A new model for the (geo)magnetic power spectrum with application to planetary dynamo radii. Earth and Planetary Science Letters, 401, 347–358. https://doi.org/10.1016/j.epsl.2014.05.013
Lowes, F. J. (1974). Spatial power spectrum of the main geomagnetic field and extrapolation to the core. Geophysical Journal of the Royal Astronomical Society, 36, 717–730. https://doi.org/10.1111/j.1365-246x.1974.tb00622.x
Martos, Y. M., Imai, M., Connerney, J. E. P., Kotsiaros, S., & Kurth, W. S. (2020). Juno reveals new insights into Io-related decameter radio emissions. Journal of Geophysical Research: Planets, 125, e2020JE006415. https://doi.org/10.1029/2020JE006415
Moore, K. M., Bloxham, J., Connerney, J. E. P., Jørgensen, J. L., & Merayo, J. M. G. (2017). The analysis of initial Juno magnetometer data using a sparse magnetic field representation. Geophysical Research Letters, 44, 4687–4693. https://doi.org/10.1002/2017GL073133
Moore, K. M., Cao, H., Bloxham, J., Stevenson, D. J., Connerney, J. E. P., & Bolton, S. J. (2019). Time variation of Jupiter's internal magnetic field consistent with zonal wind advection. Nature Astronomy, 3(8), 730–735. https://doi.org/10.1038/s41550-019-0772-5
Moore, K. M., Yadav, R. K., Kulowski, L., Cao, H., Bloxham, J., Connerney, J. E. P., et. al. (2018). A complex dynamo inferred from the hemispheric dichotomy of Jupiter's magnetic field. Nature, 561, 76–78. https://doi.org/10.1038/s41586-018-0468-5
Mura, A., Adriani, A., Connerney, J. E. P., Bolton, S. J., Altieri, F., Bagenal, F., et al. (2018). Juno observations of spot structures and a split tail in Io-induced aurorae on Jupiter. Science, 361, 774–777. https://doi.org/10.1126/science.aat1450
Nellis, W. (2000). Metallization of fluid hydrogen at 140 GPa (1.4 Mbar): Implications for Jupiter. Planetary and Space Science, 48, 671–677. https://doi.org/10.1016/S0032-0633(00)00031-3
Nellis, W., Weir, S. T., & ans Mitchell, A. C. (1999). Minimum metallic conductivity of fluid hydrogen at 140 GPa (1.4 Mbar). Physical Review B: Condensed Matter, 59(5), 3434–3449. https://doi.org/10.1103/physrevb.59.3434
Nellis, W., Weir, S. T., & Mitchell, A. C. (1996). Metalization and electrical conductivity of hydrogen in Jupiter. Science, 273, 936–938. https://doi.org/10.1126/science.273.5277.936
Olson, P., & Christensen, U. R. (2006). Dipole moment scaling for convection-driven planetary dynamos. Earth and Planetary Science Letters, 250, 561–571. https://doi.org/10.1016/j.epsl.2006.08.008
Porco, C. C., West, R. A., McEwen, A., Del Genio, A. D., Ingersol, A. P., Thomas, P., et al. (2003). Cassini imaging of Jupiter's atmosphere, satellites, and rings. Science, 299, 1541–1547. https://doi.org/10.1126/science.1079462
Ridley, V. A., & Holme, R. (2016). Modeling the Jovian magnetic field and its secular variation using all available magnetic field observations. Journal of Geophysical Research: Planets, 121, 309–337. https://doi.org/10.1002/2015JE004951
Russell, C. T., & Dougherty, M. K. (2010). Magnetic fields of the outer planets. Space Science Reviews, 152, 251–269. https://doi.org/10.1007/s11214-009-9621-7
Salpeter, E. E. (1973). On convection and gravitational layering in Jupiter and in stars of low mass. The Astrophysical Journal, 181, L83–L86. https://doi.org/10.1086/181190
Seidelmann, P. K., & Divine, N. (1977). Evaluation of Jupiter longitudes in System III (1965). Geophysical Research Letters, 4, 65–68. https://doi.org/10.1029/GL004i002p00065
Simon, A. A., Tabataba-Vakili, F., Cosentino, R., Beebe, R. F., Wong, M. H., & Orton, G. S. (2018). Historical and contemporary trends in the size, drift, and color of Jupiter's great red spot. The Astronomical Journal, 155, 151. https://doi.org/10.3847/1538-3881/aaae01
Simon, A. A., Wong, M. H., & Orton, G. S. (2015). First results from the Hubble OPAL program: Jupiter in 2015. The Astrophysical Journal, 812, 55. https://doi.org/10.1088/0004-637X/812/1/55
Smoluchowski, R. (1967). Internal structure and energy emission of Jupiter. Nature, 215, 691–695. https://doi.org/10.1038/215691a0
Smoluchowski, R. (1975). Jupiter's molecular hydrogen layer and the magnetic field. The Astrophysical Journal Letters, 200, 119–121. https://doi.org/10.1086/181911
Stallard, T. S., Burrell, A. G., Melin, H., Fletcher, L. N., Miller, S., Moore, L., et. al. (2018). Identification of Jupiter's magnetic equator through ionospheric emission. Nature Astronomy, 2, 773–777. https://doi.org/10.1038/s41550-018-0523-z
Stevenson, D. J. (1983). Planetary magnetic fields. Reports on Progress in Physics, 46, 555–620. https://doi.org/10.1088/0034-4885/46/5/001
Stevenson, D. J. (2020). Jupiter's interior as revealed by Juno. Annual Review of Earth and Planetary Sciences, 48, 465–489. https://doi.org/10.1146/annurev-earth-081619-052855
Tsang, Y. K., & Jones, C. A. (2020). Characterising Jupiter's dynamo radius using its magnetic energy spectrum. Earth and Planetary Science Letters, 530, 115879. https://doi.org/10.1016/j.epsl.2019.115879
Weir, S. T., Mitchell, A. C., & Nellis, W. J. (1996). Metallization of fluid molecular hydrogen at 140 CPa (1.4 Mbar). Physical Review Letters, 76, 1860–1863. https://doi.org/10.1103/physrevlett.76.1860
Yu, Z. J., Leinweber, H. K., & Russell, C. T. (2009). Galileo constraints on the secular variation of the Jovian magnetic field. Journal of Geophysical Research, 115, E03002. https://doi.org/10.1029/2009JE003492