Astronomy and Astrophysics; Geophysics; Earth and Planetary Sciences (miscellaneous); Space and Planetary Science
Abstract :
[en] We report the first observation of the vertical and temporal structure of the H3+ emission at the auroral footprint of Io, as observed by Juno/JIRAM. The brightness vertical profile shows a maximum at 600 km above 1 bar, with no apparent difference between the main Alfvén wing (MAW) spot emission and the tail of the footprint. This observation better aligns with a broadband energy distribution of the precipitating electrons, instead of a monoenergetic one. The temporal profile of H3+ column density has been observed after the passage of the MAW and shows a hyperbolic decrease. A model of H3+ decay is proposed, which takes into account the second-order kinetics of dissociative recombination of H3+ ions with electrons. The model is found to be in very good agreement with Juno observations. The conversion factor from radiance to column density has been derived, as well as the half-life for H3+, which is not constant but inversely proportional to the H3+ column density. This explains the wide range of H3+ lifetimes proposed before.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Mura, A. ; Institute for Space Astrophysics and Planetology, National Institute for Astrophysics, Roma, Italy
Moirano, Alessandro ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP) ; Institute for Space Astrophysics and Planetology, National Institute for Astrophysics, Roma, Italy
Castagnoli, C. ; Institute for Space Astrophysics and Planetology, National Institute for Astrophysics, Roma, Italy ; University of Rome “Tor Vergata”, Roma, Italy ; ISAC-CNR, Bologna, Italy
Migliorini, A.; Institute for Space Astrophysics and Planetology, National Institute for Astrophysics, Roma, Italy
Altieri, F.; Institute for Space Astrophysics and Planetology, National Institute for Astrophysics, Roma, Italy
Adriani, A.; Institute for Space Astrophysics and Planetology, National Institute for Astrophysics, Roma, Italy
Cicchetti, A.; Institute for Space Astrophysics and Planetology, National Institute for Astrophysics, Roma, Italy
Plainaki, C. ; Agenzia Spaziale Italiana, Rome, Italy
Piccioni, G.; Institute for Space Astrophysics and Planetology, National Institute for Astrophysics, Roma, Italy
Noschese, R.; Institute for Space Astrophysics and Planetology, National Institute for Astrophysics, Roma, Italy
Sindoni, G. ; Agenzia Spaziale Italiana, Rome, Italy
Sordini, R.; Institute for Space Astrophysics and Planetology, National Institute for Astrophysics, Roma, Italy
ASI - Agenzia Spaziale Italiana F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding text :
We thank Agenzia Spaziale Italiana (ASI) for the support of the JIRAM contribution to the Juno mission. This work is funded by the ASI-INAF Addendum No. 2016-23-H.3-2023 to grant 2016-23-H.0. This work was supported by the Fonds de la Recherche Scientifique\u2014FNRS under grant(s) No. T003524F. V.H. acknowledges support from the French government under the France 2030 investment plan, as part of the Initiative d\u2019Excellence d\u2019Aix-Marseille Universit\u00E9\u2014A*MIDEX AMX-22-CPJ-04, as well as support from CNES for the Juno mission.We thank Agenzia Spaziale Italiana (ASI) for the support of the JIRAM contribution to the Juno mission. This work is funded by the ASI\u2013INAF Addendum No. 2016-23-H.3-2023 to grant 2016-23-H.0. This work was supported by the Fonds de la Recherche Scientifique\u2014FNRS under grant(s) No. T003524F. V.H. acknowledges support from the French government under the France 2030 investment plan, as part of the Initiative d\u2019Excellence d\u2019Aix-Marseille Universit\u00E9\u2014A*MIDEX AMX-22-CPJ-04, as well as support from CNES for the Juno mission.
Achilleos N. Miller S. Tennyson J. 1998 JIM: A Time-Dependent, Three-Dimensional Model of Jupiter’s Thermosphere and Ionosphere JGR 103 20089 1998JGR...10320089A 10.1029/98JE00947
Acuña M. H. Neubauer F. M. Ness N. F. 1981 Standing Alfvén Wave Current System at Io: Voyager 1 Observations JGR 86 8513 1981JGR....86.8513A 10.1029/JA086iA10p08513
Adriani A. Coradini A. Filacchione G. 2008 JIRAM, The Image Spectrometer in the Near Infrared on Board the Juno Mission to Jupiter AsBio 8 613 2008AsBio...8..613A 10.1089/ast.2007.0167
Adriani A. Filacchione G. Di Iorio T. Turrini D. Noschese R. 2017a JIRAM, the Jovian Infrared Auroral Mapper SSRv 213 393 2017SSRv..213..393A 10.1007/s11214-014-0094-y
Adriani A. Mura A. Moriconi M. L. 2017b Preliminary JIRAM Results from Juno Polar Observations: 2. Analysis of the Jupiter Southern H3+ Emissions and Comparison with the North Aurora GeoRL 44 4633 2017GeoRL..44.4633A 10.1002/2017GL072905
Adriani A. 2019 Juno JIRAM Bundle NASA Planetary Data System urn:nasa:pds:juno_jiram:1.1, doi: 10.17189/1518967 2019pds..data...89N
Atreya S. K. Donahue T. M. 1975 The Role of Hydrocarbons in the Lonospheres of the Outer Planets Icar 25 335 1975Icar...25..335A 10.1016/0019-1035(75)90027-5
Badman S. V. Branduardi-Raymont G. Galand M. 2015 Auroral Processes at the Giant Planets: Energy Deposition, Emission Mechanisms, Morphology and Spectra SSRv 187 99 2015SSRv..187...99B 10.1007/s11214-014-0042-x
Belcher J. W. Goertz C. K. Sullivan J. D. Acuña M. H. 1981 Plasma Observations of the Alfvén Wave Generated by Io JGR 86 8508 1981JGR....86.8508B 10.1029/JA086iA10p08508
Benmahi B. Bonfond B. Benne B. 2024 Energy Mapping of Jupiter’s Auroral Electrons from Juno/UVS Data Using a New H2 UV Emission Mode A&A 685 A26 2024A&A...685A..26B 10.1051/0004-6361/202348634
Bolton S. J. Adriani A. Adumitroaie V. 2017 Jupiter’s Interior and Deep Atmosphere: The Initial Pole-to-Pole Passes with the Juno Spacecraft Sci 356 821 2017Sci...356..821B 10.1126/science.aal2108
Bonfond B. 2010 The 3D Extent of the Io UV Footprint on Jupiter JGRA 115 A09217 2010JGRA..115.9217B 10.1029/2010JA015475
Bonfond B. Grodent D. Gérard J-C. 2008 UV Io Footprint Leading Spot: A Key Feature for Understanding the UV Io Footprint Multiplicity? GeoRL 35 L05107 2008GeoRL..35.5107B 10.1029/2007GL032418
Bonfond B. Grodent D. Gérard J-C. 2009 The Io UV Footprint: Location, Inter-spot Distances and Tail Vertical Extent JGRA 114 A07224 2009JGRA..114.7224B 10.1029/2009JA014312
Bonfond B. Saur J. Grodent D. 2017 The Tails of the Satellite Auroral Footprints at Jupiter JGRA 122 7985 2017JGRA..122.7985B 10.1002/2017JA024370
Clarke J. T. Ballester G. E. Trauger J. 1996 Far-Ultraviolet Imaging of Jupiter’s Aurora and the Io Footprint Sci 274 404 1996Sci...274..404C 10.1126/science.274.5286.404
Clarke J. T. Ballester G. Trauger J. 1998 Hubble Space Telescope Imaging of Jupiter’s UV Aurora During the Galileo Orbiter Mission JGR 103 20217 1998JGR...10320217C 10.1029/98JE01130
Connerney J. E. P. Baron R. Satoh T. Owen T. 1993 Images of Excited H3+ at the Foot of the Io Flux Tube in Jupiter’s Atmosphere Sci 262 1035 1993Sci...262.1035C 10.1126/science.262.5136.1035
Connerney J. E. P. Benn M. Bjarno J. B. 2017 The Juno Magnetic Field Investigation SSRv 213 39 2017SSRv..213...39C 10.1007/s11214-017-0334-z
Connerney J. E. P. Kotsiaros S. Oliversen R. J. 2018 A New Model of Jupiter’s Magnetic Field from Juno’s First Nine Orbits GeoRL 45 2590 2018GeoRL..45.2590C 10.1002/2018GL077312
Connerney J. E. P. Satoh T. 2000 The H3+ Ion: A Remote Diagnostic of the Jovian Magnetosphere RSPTA 358 2471 2000RSPTA.358.2471C 10.1098/rsta.2000.0661
Damiano P. A. Delamere P. A. Stauffer B. Ng C-S. Johnson J. R. 2019 Kinetic Simulations of Electron Acceleration by Dispersive Scale Alfvén Waves in Jupiter’s Magnetosphere GeoRL 46 3043 2019GeoRL..46.3043D 10.1029/2018GL081219
Dinelli B. M. Miller S. Tennyson J. 1992 Bands of H3+ up to 4v2: Rovibrational Transitions from First Principles calculations JMoSp 153 718 1992JMoSp.153..718D 10.1016/0022-2852(92)90506-J
Dinelli B. M. Fabiano F. Adriani A. 2017 Preliminary JIRAM Results from Juno Polar Observations: 1. Methodology and Analysis Applied to the Jovian Northern Polar Region GeoRL 44 4625 2017GeoRL..44.4625D 10.1002/2017GL072929
Dinelli B. M. Le Sueur C. R. Tennyson J. Amos R. D. 1995 Ab Initio Ro-vibrational Levels of H3+ beyond the Born-Oppenheimer Approximation CPL 232 295 1995CPL...232..295D 10.1016/0009-2614(94)01301-B
Drossart P. Maillard J. Caldwell J. 1989 Detection of H3+ on Jupiter Natur 340 539 1989Natur.340..539D 10.1038/340539a0
Gérard J-C. Mura A. Bonfond B. 2018 Concurrent Ultraviolet and Infrared Observations of the North Jovian Aurora during Juno’s First Perijove Icar 312 145 2018Icar..312..145G 10.1016/j.icarus.2018.04.020
Gershman D. J. Connerney J. E. P. Kotsiaros S. 2019 Alfvénic Fluctuations Associated with Jupiter’s Auroral Emissions GeoRL 46 7157 2019GeoRL..46.7157G 10.1029/2019GL082951
Grodent D. Waite J. H. Gérard J.-C. 2001 A Self-consistent Model of the Jovian Auroral Thermal Structure JGR 106 12933 2001JGR...10612933G 10.1029/2000ja900129
Gurnett D. A. Goertz C. K. 1981 Multiple Alfvén Wave Reflections Excited by Io: Origin of the Jovian Decametric Arcs JGR 86 717 1981JGR....86..717G 10.1029/JA086iA02p00717
Hess S. L. G. Delamere P. Dols V. Bonfond B. Swift D. 2010 Power Transmission and Particle Acceleration along the Io Flux Tube JGRA 115 A06205 2010JGRA..115.6205H 10.1029/2009JA014928
Hue V. Gladstone G. R. Louis C. K. 2023 The Io, Europa, and Ganymede Auroral Footprints at Jupiter in the Ultraviolet: Positions and Equatorial Lead Angles JGRA 128 e2023JA031363 2023JGRA..12831363H 10.1029/2023JA031363
Hue V. Szalay J. R. Greathouse T. K. 2022 A Comprehensive Set of Juno in Situ and Remote Sensing Observations of the Ganymede Auroral Footprint GeoRL 49 e2021GL096994 2022GeoRL..4996994H 10.1029/2021GL096994
Huntress W. T. Jr. 1975 A Review of Jovian Ionospheric Chemistry AdAMP 10 295 1974AdAMP..10..295H 10.1016/S0065-2199(08)60351-6
Huntress W. T. Jr. 1977 Laboratory Studies of Bimolecular Reactions of Positive Ions in Interstellar Clouds, in Comets, and in Planetary Atmospheres of Reducing Composition ApJS 33 495 1977ApJS...33..495H 10.1086/190439
Ingersoll A. P. Vasavada A. R. Little B. 1998 Imaging Jupiter’s Aurora at Visible Wavelengths Icar 135 251 1998Icar..135..251I 10.1006/icar.1998.5971
Johnson R. E. Stallard T. S. Melin H. Nichols J. D. Cowley S. W. H. 2017 Jupiter’s Polar Ionospheric Flows: High Resolution Mapping of Spectral Intensity and Line-of-Sight Velocity of H3 + ions JGRA 122 7599 2017JGRA..122.7599J 10.1002/2017JA024176
Kivelson M. Bagenal F. Kurth W. 2004 Magnetospheric Interactions with Satellites Jupiter. The Planet, Satellites and Magnetosphere. Cambridge Cambridge Univ. Press 513 2004jpsm.book..513K
Lam H. A. Miller S. Joseph R. D. 1997 Variation in the H3+ Emission of Uranus ApJ 474 L73 1997ApJ...474L..73L 10.1086/310424
Larsson M. 2012 Dissociative Recombination of H3+: 10 Years in Retrospectphil RSPTA 370 5118 2012RSPTA.370.5118L 10.1098/rsta.2012.0020
Larsson M. McCall B. J. Orel A. E. 2008 The Dissociative Recombination of H3+—a Saga Coming to an End? CPL 462 145 2008CPL...462..145L 10.1016/j.cplett.2008.06.069
Lystrup M. B. Miller S. Dello Russo N. Vervack Jr R. J. Stallard T. 2008 First Vertical Ion Density Profile in Jupiter’s Auroral Atmosphere: Direct Observations Using the Keck II Telescope ApJ 677 790 2008ApJ...677..790L 10.1086/529509
Maillard J. P. Lellouch E. Waite J. H. 1999 Search for Ionospheric Winds in Jupiter from the H3+ Emissions BAAS 31 1186 1999BAAS...31.1186M
Melin H. Miller S. Stallard T. Grodent D. 2005 Non-LTE Effects on H3+ Emission in the Jovian Upper Atmosphere Icar 178 97 2005Icar..178...97M 10.1016/j.icarus.2005.04.016
Migliorini A. Dinelli B. M. Castagnoli C. 2023 First Observations of CH4 and Spatially Resolved Emission Layers at Jupiter Equator, as Seen by JIRAM/Juno JGRE 128 e2022JE007509 2023JGRE..12807509M 10.1029/2022JE007509
Migliorini A. Dinelli B. M. Moriconi M. L. 2019 H3+ Characteristics in the Jupiter Atmosphere as Observed at Limb with Juno/JIRAM Icar 329 132 2019Icar..329..132M 10.1016/j.icarus.2019.04.003
Miller S. Achilleos N. Ballester G. E. 1997 Mid-to-Low Latitude H+3Emission from Jupiter Icar 130 57 1997Icar..130...57M 10.1006/icar.1997.5813
Miller S. Tennyson J. Geballe T. R. Stallard T. 2020 Thirty Years of H3+ Astronomy RvMP 92 035003 2020RvMP...92c5003M 10.1103/RevModPhys.92.035003
Moirano A. Mura A. Adriani A. 2021 Morphology of the Auroral Tail of Io, Europa, and Ganymede from JIRAM L-band Imager JGRA 126 e2021JA029450 2021JGRA..12629450M 10.1029/2021JA029450
Moirano A. Mura A. Bonfond B. 2023 Variability of the Auroral Footprint of Io Detected by Juno-JIRAM and Modeling of the Io Plasma Torus JGRA 128 e2023JA031288 2023JGRA..12831288M 10.1029/2023JA031288
Moriconi M. L. 2017 Preliminary JIRAM Results from Juno Polar Observations: 3. Evidence of Diffuse Methane Presence in the Jupiter Auroral Regions GeoRL 44 4641 2017GeoRL..44.4641M 10.1002/2017GL073592
Mura A. 2024 Data and Code for ‘Vertical and Temporal H3+ Structure at the Auroral Footprint of Io’, v2 Zenodo doi: 10.5281/zenodo.14510369
Mura A. Adriani A. Altieri F. 2017 Infrared Observations of Jovian Aurora from Juno’s First Orbits: Main Oval and Satellite Footprints: Jovian Aurora IR Observations from Juno GeoRL 44 5308 2017GeoRL..44.5308M 10.1002/2017GL072954
Mura A. Adriani A. Connerney J. E. P. 2018 Juno Observations of Spot Structures and a Split Tail in Io-Induced Aurorae on Jupiter Sci 361 774 2018Sci...361..774M 10.1126/science.aat1450
Neubauer F. 1980 Nonlinear Standing Alfvén Wave Current System at Io: Theory JGR 85 1171 1980JGR....85.1171N 10.1029/JA085iA03p01171
Oka T. 1980 Observation of the Infrared Spectrum of H+3 PhRvL 45 531 1980PhRvL..45..531O 10.1103/PhysRevLett.45.531
Perry J. J. Kim Y. H. Fox J. L. Porter H. S. 1999 Chemistry of the Jovian Auroral Ionosphere JGR 104 16541 1999JGR...10416541P 10.1029/1999JE900022
Rabia J. Hue V. André N. 2024 Properties of Electrons Accelerated by the Ganymede-Magnetosphere Interaction: Survey of Juno High-Latitude Observations JGRA 129 e2024JA032604 2024JGRA..12932604R 10.1029/2024JA032604
Rabia J. Hue V. Szalay J. R. 2023 Evidence for Non-monotonic and Broadband Electron Distributions in the Europa Footprint Tail Revealed by Juno In Situ Measurements GeoRL 50 e2023GL103131 2023GeoRL..5003131R 10.1029/2023GL103131
Rego D. Achilleos N. Stallard T. 1999 Supersonic Winds in Jupiter’s Aurorae Natur 399 121 1999Natur.399..121R 10.1038/20121
Sánchez-López A. López-Puertas M. García-Comas M. 2022 The CH4 Abundance in Jupiter’s Upper Atmosphere A&A 662 A91 2022A&A...662A..91S 10.1051/0004-6361/202141933
Schlegel S. Saur J. 2022 Alternating Emission Features in Io’s Footprint Tail: Magnetohydrodynamical Simulations of Possible Causes JGRA 127 e2021JA030243 2022JGRA..12730243S 10.1029/2021JA030243
Seiff A. Kirk D. B. Knight T. C. D. 1998 Thermal Structure of Jupiter’s Atmosphere near the Edge of a 5-μm Hot Spot in the North Equatorial Belt JGR 103 22857 1998JGR...10322857S 10.1029/98JE01766
Stallard T. Miller S. Millward G. Joseph R. D. 2001 On the Dynamics of the Jovian Ionosphere and Thermosphere: I. The Measurement of Ion Winds Icar 154 475 2001Icar..154..475S 10.1006/icar.2001.6681
Stallard T. Miller S. Millward G. Joseph R. D. 2002 On the Dynamics of the Jovian Ionosphere and Thermosphere: II. The Measurement of H3+ Vibrational Temperature, Column Density, and Total Emission Icar 156 498 2002Icar..156..498S 10.1006/icar.2001.6793
Stallard T. S. Melin H. Miller S. 2015 Cassini VIMS Observations of H3+ Emission on the Nightside of Jupiter JGRA 120 6948 2015JGRA..120.6948S 10.1002/2015JA021097
Sulaiman A. H. Hospodarsky G. B. Elliott S. S. 2020 Wave-Particle Interactions Associated with Io’s Auroral Footprint: Evidence of Alfvén, Ion Cyclotron, and Whistler Modes GeoRL 47 e2020GL088432 2020GeoRL..4788432S 10.1029/2020GL088432
Sundström G. Mowat J. R. Danared H. 1994 Destruction Rate of H3+ by Low-Energy Electrons Measured in a Storage-Ring Experiment Sci 263 785 1994Sci...263..785S 10.1126/science.263.5148.785
Szalay J. R. Allegrini F. Bagenal F. 2020 A New Framework to Explain Changes in Io’s Footprint Tail Electron Fluxes GeoRL 47 e2020GL089267 2020GeoRL..4789267S 10.1029/2020GL089267
Szalay J. R. Bonfond B. Allegrini F. 2018 In Situ Observations Connected to the Io Footprint Tail Aurora JGRE 123 3061 2018JGRE..123.3061S 10.1029/2018JE005752
Tao C. Badman S. V. Fujimoto M. 2011 UV and IR Auroral Emission Model for the Outer Planets: Jupiter and Saturn Comparison Icar 213 581 2011Icar..213..581T 10.1016/j.icarus.2011.04.001
Uno T. Kasaba Y. Tao C. 2015 Vertical Emissivity Profiles of Jupiter’s Northern H3+ and H2 Infrared Auroras Observed by Subaru/IRCS JGRA 119 10,219 2014JGRA..11910219U 10.1002/2014JA020454
Vasavada A. R. Bouchez A. H. Ingersoll A. P. Little B. Anger C. D. 1999 Jupiter’s Visible Aurora and Io Footprint JGR 104 27133 1999JGR...10427133V 10.1029/1999JE001055
von Kármán T. 1911 Ueber den Mechanismus des Widerstandes, Den Ein Bewegter Körper in einer Flüssigkeit Erfährt NWGot 1911 509 http://eudml.org/doc/58812
Waite J. H. Jr Cravens T. E. Kozyra J. 1983 Electron Precipitation and Related Aeronomy of the Jovian Thermosphere and Ionosphere JGR 88 6143 1983JGR....88.6143W 10.1029/JA088iA08p06143
Watanabe H. Kita H. Tao C. 2018 Pulsation Characteristics of Jovian Infrared Northern Aurora Observed by the Subaru IRCS with Adaptive Optics GeoRL 45 11,547 2018GeoRL..4511547W 10.1029/2018GL079411
Yates J. N. Ray L. C. Achilleos N. Witasse O. G. Altobelli N. 2020 Magnetosphere-Ionosphere-Thermosphere Coupling at Jupiter Using a Three-Dimensional Atmospheric General Circulation Model JGRA 125 e2019JA026792 2020JGRA..12526792Y 10.1029/2019JA026792
Zarka P. 2004 Fast Radio Imaging of Jupiter’s Magnetosphere at Low-Frequencies with LOFAR P&SS 52 1455 2004P&SS...52.1455Z 10.1016/j.pss.2004.09.017