bibliography; planets and satellites: atmospheres; planets and satellites: aurorae; planets and satellites: gaseous planets; publications; Aurorae; Conductance values; Electron energy distributions; Hall conductance; Planet and satellite: aurora; Planet and satellite: gaseous planet; Planets and satellites; Planets and satellites: atmospheres; Publication; Astronomy and Astrophysics; Space and Planetary Science; astro-ph.EP; Physics - Plasma Physics
Abstract :
[en] Context. The ionospheric Pedersen and Hall conductances play an important role in understanding the coupling by which angular momentum, energy, and matter are exchanged between the magnetosphere, ionosphere and thermosphere at Jupiter, modifying the composition and temperature of the planet. In the high-latitude regions, the Pedersen and Hall conductances are enhanced by the auroral electron precipitation. Aims. We investigated the effect of a broadband-precipitating electron energy distribution, similar to the observed electron distributions through particle measurements, on the Pedersen and Hall conductance values. The new conductance values were compared to those obtained from previous studies, notably for a mono-energetic distribution. Methods. The broadband-precipitating electron energy distribution was modeled by a kappa distribution, which is used as an input in an electron transport model that computes the vertical density profiles of ionospheric ions. Assuming that the conductivity is mostly governed by the density of H3+ and CH5+, we then evaluated the vertical profiles of the Pedersen and Hall conductivities from the vertical profiles of the ion density. Finally, the Pedersen and Hall conductances were computed by integrating the corresponding conductivities over altitude. Results. The Pedersen and Hall conductance values are globally higher for a broadband electron energy distribution instead of a mono-energetic distribution. In addition, the considered electron collision cross sections and the chosen method for computing the ion production rates can also have significant impacts on the conductance values. The comparison between our results and those deduced from corotation enforcement theory suggests that either a physical mechanism limits the field-aligned currents or the auroral electrons precipitating in the atmosphere are accelerated by processes that are not associated with the field-aligned currents.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Sicorello, Guillaume ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Bonfond, Bertrand ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Benmahi, Bilal ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP) ; Aix-Marseille Université, CNRS, CNES, Institut Origines, LAM, Marseille, France
Salveter, A. ; Institute of Geophysics and Meteorology, University of Cologne, Cologne, Germany
Moirano, Alessandro ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP) ; Institute for Space Astrophysics and Planetology, National Institute for Astrophysics (INAF-IAPS), Rome, Italy
Head, Linus Alexander ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Vinesse, Julie ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Greathouse, T. ; Southwest Research Institute, San Antonio, United States
Gladstone, G.R.; Southwest Research Institute, San Antonio, United States ; Physics and Astronomy Department, University of Texas at San Antonio, United States
Barthélémy, M.; Univ. Grenoble Alpes, CNRS, IPAG, Grenoble, France
Language :
English
Title :
The Pedersen and Hall conductances in the Jovian polar regions: New maps based on a broadband electron energy distribution
F.R.S.-FNRS - Fonds de la Recherche Scientifique NASA - National Aeronautics and Space Administration
Funding text :
This work was supported by the Fonds de la Recherche Scientifique - FNRS under Grant(s) No. T003524F. T. Greathouse was funded by the NASA\u2019s New Frontiers Program for Juno via contract NNM06AA75C with the Southwest Research Institute. B. Bonfond is a Research Associate of the Fonds de la Recherche Scientifique - FNRS.
Achilleos, N., Miller, S., Tennyson, J., et al. 1998, J. Geophys. Res.: Planets, 103, 20089
Al Saati, S., Clément, N., Louis, C., et al. 2022, J. Geophys. Res.: Space Phys., 127
Banks, P. M., & Kockarts, G. 1973, Aeronomy (New York London: Academic Press)
Benmahi, B. 2022, PhD thesis, Université de Bordeaux
Benmahi, B., Bonfond, B., Benne, B., et al. 2024a, A&A, 685, A26
Benmahi, B., Bonfond, B., Benne, B., et al. 2024b, A&A, 691, A91
Bolton, S. J., Lunine, J., Stevenson, D., et al. 2017, Space Sci. Rev., 213, 5
Bonfond, B., Grodent, D., Gérard, J.-C., et al. 2009, J. Geophys. Res.: Space Phys., 114
Bonfond, B., Gustin, J., Gérard, J.-C., et al. 2015, Ann. Geophys., 33, 1211
Bonfond, B., Gladstone, G. R., Grodent, D., et al. 2017, Geophys. Res. Lett., 44, 4463
Bonfond, B., Yao, Z., & Grodent, D. 2020, J. Geophys. Res.: Space Phys., 125, e2020JA028152
Bonfond, B., Groulard, A., Benmahi, B., et al. 2024, in Proceedings of the Magnetospheres of the Outer Planets (MOP) 2024 Conference, Minneapolis, Minnesota, USA (F.R.S.-FNRS - Fonds de la Recherche Scientifique)
Bougher, S. W., Waite, J. H., Majeed, T., & Gladstone, G. R. 2005, J. Geophys. Res.: Planets, 110, 2003JE002230
Clément, N., Nakamura, Y., Blanc, M., Wang, Y., & Al Saati, S. 2025, J. Geophys. Res.: Space Phys., 130, e2024JA033061
Connerney, J. E. P., Timmins, S., Oliversen, R. J., et al. 2022, J. Geophys. Res.: Planets, 127, e2021JE007055
Coumans, V., Gérard, J.-C., & Hubert, B. 2002, J. Geophys. Res., 107, 1347
Cowley, S., & Bunce, E. 2001, Planet. Space Sci., 49, 1067
Dumont, M., Grodent, D., Radioti, A., et al. 2018, J. Geophys. Res.: Space Phys., 123, 8489
Galand, M., Moore, L., Mueller-Wodarg, I., Mendillo, M., & Miller, S. 2011, J. Geophys. Res.: Space Phys., 116
Germany, G. A., Torr, D. G., Richards, P. G., Torr, M. R., & John, S. 1994, J. Geophys. Res.: Space Phys., 99, 23297
Gladstone, G. R., Persyn, S. C., Eterno, J. S., et al. 2014, Space Sci. Rev., 213, 447
Grodent, D., Waite, J. H., & Gérard, J.-C. 2001, J. Geophys. Res.: Space Phys., 106, 12933
Gronoff, G., Simon Wedlund, C., Hegyi, B., et al. 2025, Advances in Space Research, 75, 8232
Groulard, A., Bonfond, B., Grodent, D., et al. 2024, Icarus, 413, 116005
Gustin, J., Grodent, D., Ray, L., et al. 2016, Icarus, 268, 215
Gérard, J., & Singh, V. 1982, J. Geophys. Res.: Space Phys., 87, 4525
Gérard, J., Bonfond, B., Mauk, B. H., et al. 2019, J. Geophys. Res.: Space Phys., 124, 8298
Gérard, J., Gkouvelis, L., Bonfond, B., et al. 2020, J. Geophys. Res.: Space Phys., 125, e2020JA028142
Gérard, J., Gkouvelis, L., Bonfond, B., et al. 2021, J. Geophys. Res.: Space Phys., 126, e2020JA028949
Head, L. A., Grodent, D., Bonfond, B., et al. 2024, A&A, 688, A205
Hill, T. 1979, J. Geophys. Res.: Space Phys., 84, 6554
Hiraki, Y., & Tao, C. 2008, Ann. Geophys., 26, 77
Hue, V., Hersant, F., Cavalié, T., Dobrijevic, M., & Sinclair, J. 2018, Icarus, 307, 106
Hue, V., Randall Gladstone, G., Greathouse, T. K., et al. 2019, AJ, 157, 90
Kotsiaros, S., Connerney, J. E. P., Clark, G., et al. 2019, Nat. Astron., 3, 904
Lilensten, J., Kofman, W., Wisemberg, J., Oran, E. S., & DeVore, C. R. 1989, Ann. Geophys., 7, 83
Livadiotis, G. 2017, Kappa Distributions: Theory and Applications in Plasmas (Amsterdam Oxford Cambridge, MA: Elsevier)
Lysak, R. L., Sulaiman, A. H., Bagenal, F., & Crary, F. 2023, J. Geophys. Res.: Space Phys., 128, e2022JA031180
Mauk, B. H., Haggerty, D. K., Jaskulek, S. E., et al. 2017a, Space Sci. Rev., 213, 289
Mauk, B. H., Haggerty, D. K., Paranicas, C., et al. 2017b, Geophys. Res. Lett., 44, 4410
Mauk, B. H., Haggerty, D. K., Paranicas, C., et al. 2018, Geophys. Res. Lett., 45, 1277
Millward, G., Miller, S., Stallard, T., Aylward, A. D., & Achilleos, N. 2002, Icarus, 160, 95
Millward, G., Miller, S., Stallard, T., Achilleos, N., & Aylward, A. D. 2005, Icarus, 173, 200
Moses, J. I., Fouchet, T., Bézard, B., et al. 2005, J. Geophys. Res.: Planets, 110, 2005JE002411
Nakamura, Y., Terada, K., Tao, C., et al. 2022, J. Geophys. Res.: Space Phys., 127, e2022JA030312
Nichols, J. D., & Cowley, S. W. H. 2003, Ann. Geophys., 21, 1419
Nichols, J. D., & Cowley, S. W. H. 2004, Ann. Geophys., 22, 1799
Nichols, J. D., & Cowley, S. W. H. 2022, J. Geophys. Res.: Space Phys., 127, e2021JA030040
Nichols, J. D., Clarke, J. T., Gérard, J. C., & Grodent, D. 2009, Geophys. Res. Lett., 36, 2009GL037578
Perry, J. J., Kim, Y. H., Fox, J. L., & Porter, H. S. 1999, J. Geophys. Res.: Planets, 104, 16541
Ray, L. C., Achilleos, N. A., Vogt, M. F., & Yates, J. N. 2014, J. Geophys. Res.: Space Phys., 119, 4740
Robinson, R. M., Vondrak, R. R., Miller, K., Dabbs, T., & Hardy, D. 1987, J. Geophys. Res., 92, 2565
Rutala, M. J., Clarke, J. T., Vogt, M. F., & Nichols, J. D. 2024, J. Geophys. Res.: Space Phys., 129, e2023JA032122
Salveter, A., Saur, J., Clark, G., & Mauk, B. H. 2022, J. Geophys. Res.: Space Phys., 127
Schunk, R., & Nagy, A. 2009, Ionospheres: Physics, Plasma Physics, and Chemistry, 2nd edn. (Cambridge University Press)
Sinclair, J. A., Greathouse, T. K., Giles, R. S., et al. 2025, Planet. Sci. J., 6, 15
Singhal, R. P., Tripathi, A. K., Halder, S., & Ii, O. N. S. 2016, ApJ, 832, 172
Smith, C. G. A., & Aylward, A. D. 2009, Ann. Geophys., 27, 199
Sulaiman, A. H., Mauk, B. H., Szalay, J. R., et al. 2022, J. Geophys. Res.: Space Phys., 127
Sundström, G., Mowat, J. R., Danared, H., et al. 1994, Science, 263, 785
Tao, C., Fujiwara, H., & Kasaba, Y. 2009, J. Geophys. Res.: Space Phys., 114, 2008JA013966
Tao, C., Fujiwara, H., & Kasaba, Y. 2010, Planet. Space Sci., 58, 351
Tao, C., Badman, S. V., & Fujimoto, M. 2011, Icarus, 213, 581
Tripathi, A. K., Singhal, R. P., & Singh Ii, O. N. 2017, Ann. Geophys., 35, 239
Tripathi, A. K., Singhal, R. P., & Wendel, D. E. 2023, Astrophys. Space Sci., 368, 61
Vasavada, A. R., Bouchez, A. H., Ingersoll, A. P., Little, B., & Anger, C. D. 1999, J. Geophys. Res.: Planets, 104, 27133
Waite, J. H., Cravens, T. E., Kozyra, J., et al. 1983, J. Geophys. Res.: Space Phys., 88, 6143
Wang, Y., Blanc, M., Louis, C., et al. 2021, J. Geophys. Res.: Space Phys., 126
Wang, Y., Yang, J., Guo, X., Wang, C., & Blanc, M. 2023, J. Geophys. Res.: Space Phys., 128, e2022JA031132
Wilson, R. J., Vogt, M. F., Provan, G., et al. 2023, Space Sci. Rev., 219, 15