Ecology, Evolution, Behavior and Systematics; Earth-Surface Processes
Abstract :
[en] Melt pond formation is a common feature of spring and summer Arctic sea ice, but the role and impact of sea ice melt and pond formation on both the direction and size of CO<inf>2</inf> fluxes between air and sea is still unknown. Here we report on the CO<inf>2</inf>-carbonate chemistry of melting sea ice, melt ponds and the underlying seawater as well as CO<inf>2</inf> fluxes at the surface of first-year landfast sea ice in the Resolute Passage, Nunavut, in June 2012. Early in the melt season, the increase in ice temperature and the subsequent decrease in bulk ice salinity promote a strong decrease of the total alkalinity (TA), total dissolved inorganic carbon (T CO<inf>2</inf>) and partial pressure of CO<inf>2</inf> (pCO<inf>2</inf>) within the bulk sea ice and the brine. As sea ice melt progresses, melt ponds form, mainly from melted snow, leading to a low in situ melt pond pCO<inf>2</inf> (36 μatm). The percolation of this low salinity and low pCO<inf>2</inf> meltwater into the sea ice matrix decreased the brine salinity, TA and T CO<inf>2</inf>, and lowered the in situ brine pCO<inf>2</inf> (to 20 μatm). This initial low in situ pCO<inf>2</inf> observed in brine and melt ponds results in air-ice CO<inf>2</inf> fluxes ranging between -0.04 and -5.4 mmolm<sup>-2</sup> day<sup>-1</sup> (negative sign for fluxes from the atmosphere into the ocean). As melt ponds strive to reach pCO<inf>2</inf> equilibrium with the atmosphere, their in situ pCO<inf>2</inf> increases (up to 380 μatm) with time and the percolation of this relatively high concentration pCO<inf>2</inf> meltwater increases the in situ brine pCO<inf>2</inf> within the sea ice matrix as the melt season progresses. As the melt pond pCO<inf>2</inf> increases, the uptake of atmospheric CO<inf>2</inf> becomes less significant. However, since melt ponds are continuously supplied by meltwater, their in situ pCO<inf>2</inf> remains undersaturated with respect to the atmosphere, promoting a continuous but moderate uptake of CO<inf>2</inf> (∼-1 mmolm<sup>-2</sup> day<sup>-1</sup>) into the ocean. Considering the Arctic seasonal sea ice extent during the melt period (90 days), we estimate an uptake of atmospheric CO<inf>2</inf> of -10.4 Tg of Cyr<sup>-1</sup>. This represents an additional uptake of CO<inf>2</inf> associated with Arctic sea ice that needs to be further explored and considered in the estimation of the Arctic Ocean's overall CO<inf>2</inf> budget.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Geilfus, N.-X.; Centre for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg, Canada ; Arctic Research Centre, Aarhus University, Aarhus, Denmark
Galley, R.J.; Centre for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg, Canada
Crabeck, Odile ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) ; Centre for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg, Canada
Papakyriakou, T.; Centre for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg, Canada
Landy, J. ; Centre for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg, Canada
Tison, J.-L.; Laboratoire de Glaciologie, DSTE, Université Libre de Bruxelles, Brussels, Belgium
Rysgaard, S.; Centre for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg, Canada ; Arctic Research Centre, Aarhus University, Aarhus, Denmark ; Greenland Climate Research Centre, Greenland Institute of Natural Resources, Nuuk, Greenland
Language :
English
Title :
Inorganic carbon dynamics of melt-pond-covered first-year sea ice in the Canadian Arctic
Bates, N. R. and Mathis, J. T.: The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks, Biogeosciences, 6, 2433-2459, doi:10.5194/bg-6-2433-2009, 2009.
Copin Montégut, C.: A new formula for the effect of temperature on the partial pressure of carbon dioxide in seawater, Mar. Chem., 25, 29-37, 1988.
Cox, G. F. N. and Weeks, W. F.: Salinity variations in sea ice, J. Glaciol., 13, 109-120, 1974.
Cox, G. F. N. and Weeks, W. F.: Equations for determining the gas and brine volumes in sea-ice samples, J. Glaciol., 29, 306-316, 1983.
Crabeck, O., Delille, B., Thomas, D., Geilfus, N.-X., Rysgaard, S., and Tison, J.-L.: CO2 and CH4 in sea ice from a subarctic fjord under influence of riverine input, Biogeosciences, 11, 6525-6538, doi:10.5194/bg-11-6525-2014, 2014.
Dickson, A. G. and Millero, F. J.: A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media, Deep-Sea Res. Pt. I, 34, 1733-1743, 1987.
Dieckmann, G. S. and Hellmer, H. H.: The importance of Sea Ice: An Overview, in: Sea Ice, second edition, edited by: Thomas, D. N. and Dieckmann, G. S., Wiley-Blackwell, Oxford, UK, 1-22, 2010.
Dieckmann, G. S., Nehrke, G., Uhlig, C., Göttlicher, J., Gerland, S., Granskog, M. A., and Thomas, D. N.: Brief Communication: Ikaite (CaCO3 · 6H2O) discovered in Arctic sea ice, The Cryosphere, 4, 227-230, doi:10.5194/tc-4-227-2010, 2010.
Eicken, H., Krouse, H. R., Kadko, D., and Perovich, D. K.: Tracer studies of pathways and rates of meltwater transport through Arctic summer sea ice, J. Geophys. Res., 107, 8046, doi:10.1029/2000JC000583, 2002.
Eicken, H., Grenfell, T. C., Perovich, D. K., Richter-Menge, J. A., and Frey, K.: Hydraulic controls of summer Arctic pack ice albedo, J. Geophys. Res., 109, C08007, doi:10.1029/2003JC001989, 2004.
Fetterer, F. and Untersteiner, N.: Observations of melt ponds on Arctic sea ice, J. Geophys. Res., 103, 24821-24835, 1998.
Frankignoulle, M.: Field-measurements of air sea CO2 exchange, Limnol. Oceanogr., 33, 313-322, 1988.
Freitag, J. and Eicken, H.: Meltwater circulation and permeability of Arctic summer sea ice derived from hydrological field experiments, J. Glaciol., 49, 349-358, 2003.
Galindo, V., Levasseur, M., Mundy, C. J., Gosselin, M., Tremblay, J.-É., Scarratt, M., Gratton, Y., Papakiriakou, T., Poulin, M., and Lizotte, M.: Biological and physical processes influencing sea ice, under-ice algae, and dimethylsulfoniopropionate during spring in the Canadian Arctic Archipelago, J. Geophys. Res.- Oceans, 119, 3746-3766, 2014.
Galley, R. J., Else, B. G. T., Howell, S. E. L., Lukovich, J. V., and Barber, D. G.: Landfast sea ice conditions in the Canadian Arctic: 1983-2009, ARCTIC, 65, 133-144, 2012.
Geilfus, N. X., Delille, B., Verbeke, V., and Tison, J. L.: Towards a method for high vertical resolution measurements of the partial pressure of CO2 within bulk sea ice, J. Glaciol., 58, 287-300, 2012a.
Geilfus, N. X., Carnat, G., Papakyriakou, T., Tison, J. L., Else, B., Thomas, H., Shadwick, E., and Delille, B.: Dynamics of pCO2 and related air-ice CO2 fluxes in the Arctic coastal zone (Amundsen Gulf, Beaufort Sea), J. Geophys. Res., 117, C00G10, doi:10.1029/2011JC007118, 2012b.
Geilfus, N. X., Carnat, G., Dieckmann, G. S., Halden, N., Nehrke, G., Papakyriakou, T., Tison, J. L., and Delille, B.: First estimates of the contribution of CaCO3 precipitation to the release of CO2 to the atmosphere during young sea ice growth, J. Geophys. Res., 118, 244-255, doi:10.1029/2012JC007980, 2013a.
Geilfus, N. X., Galley, R. J., Cooper, M., Halden, N., Hare, A., Wang, F., Søgaard, D. H., and Rysgaard, S.: Gypsum crystals observed in experimental and natural sea ice, Geophys. Res. Lett., 40, 6362-6367, doi:10.1002/2013GL058479, 2013b.
Geilfus, N.-X., Tison, J.-L., Ackley, S. F., Galley, R. J., Rysgaard, S., Miller, L. A., and Delille, B.: Sea ice pCO2 dynamics and air- ice CO2 fluxes during the Sea Ice Mass Balance in the Antarctic (SIMBA) experiment - Bellingshausen Sea, Antarctica, The Cryosphere, 8, 2395-2407, doi:10.5194/tc-8-2395-2014, 2014.
Gleitz, M., Rutgers van der Loeff, M., Thomas, D. N., Dieckmann, G. S., and Millero, F. J.: Comparison of summer and winter inorganic carbon, oxygen and nutrient concentrations in Antarctic sea ice brine, Mar. Chem., 51, 81-91, 1995.
Glud, R. N., Rysgaard, S., Turner, G., McGinnis, D. F., and Leakey, R. J. G.: Biological- and physical-induced oxygen dynamics in melting sea ice of the Fram Strait, Limnol. Oceanogr., 59, 1097-1111, 2014.
Hansen, J.W., Thamdrup, B., and Jørgensen, B. B.: Anoxic incubation of sediment in gas-tight plastic bags: a method for biogeochemical processes studies, Mar. Ecol.-Prog. Ser., 208, 273-282, 2000.
Hanson, A. M.: Studies of the mass budget of arctic pack-ice floes, J. Glaciol., 5, 701-709, 1965.
Haraldsson, C., Anderson, L. G., Hassellov, M., Hulth, S., and Olsson, K.: Rapid, high-precision potentiometric titration of alkalinity in ocean and sediment pore waters, Deep-Sea Res. Pt. I, 44, 2031-2044, 1997.
Landy, J. C., Ehn, J. K., Shields, M., and Barber, D. G.: Surface melt pond evolution on landfast first-year sea ice in the Canadian Arctic Archipelago, J. Geophys. Res.-Oceans, 119, 3054-3075, doi:10.1002/2013JC009617, 2014.
Lazar, B. and Loya, Y.: Bioerosion of coral reefs - a chemical approach, Limnol. Oceanogr., 36, 377-383, 1991.
Leppäranta, M. and Manninen, T.: The brine and gas content of sea ice with attention to low salinities and high temperatures, Finnish Institute of Marine Research, Helsinki, Finland, Internal Report, 1988, 15 pp., 1988.
Mehrbach, C., Culberson, C. H., Hawley, J. E., and Pytkowicz, R. M.: Measurements of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure, Limnol. Oceanogr., 18, 897-907, 1973.
Miller, L. A., Carnat, G., Else, B. G. T., Sutherland, N., and Papakyriakou, T. N.: Carbonate system evolution at the Arctic Ocean surface during autumn freeze-up, J. Geophys. Res., 111, C00G04, doi:10.1029/2011JC007143, 2011.
Mundy, C. J., Gosselin, M., Ehn, J. K., Belzile, C., Poulin, M., Alou, E., Roy, S., Hop, H., Lessard, S., Papakyriakou, T. N., Barber, D. G., and Stewart, J.: Characteristics of two distinct high-light acclimated algal communities during advanced stages of sea ice melt, Polar Biol., 34, 1869-1886, 2011.
Nomura, D., Eicken, H., Gradinger, R., and Shirasawa, K.: Rapid physically driven inversion of the air-sea ice CO2 flux in the seasonal landfast ice off Barrow, Alaska after onset surface melt, Cont. Shelf. Res., 30, 1998-2004, 2010a.
Nomura, D., Yoshikawa-Inoue, H., Toyota, T., and Shirasawa, K.: Effects of snow, snow-melting and re-freezing processes on air- sea ice CO2 flux, J. Glaciol., 56, 262-270, 2010b.
Nomura, D., Granskog, M. A., Assmy, P., Simizu, D., and Hashida, G.: Arctic and Antarctic sea ice acts as a sink for atmospheric CO2 during periods of snowmelt and surface flooding, J. Geophys. Res.-Oceans, 118, 6511-6524, doi:10.1002/2013JC009048, 2013.
Papadimitriou, S., Kennedy, H., Norman, L., Kennedy, D. P., Dieckmann, G. S., and Thomas, D. N.: The effect of biological activity, CaCO3 mineral dynamics, and CO2 degassing in the inorganic carbon cycle in sea ice and late winter-early spring in the Weddell Sea, Antarctica, J. Geophys. Res., 117, C08011, doi:10.1029/2012JC008058, 2012.
Papakyriakou, T. and Miller, L.: Springtime CO2 exchange over seasonal sea ice in the Canadian Arctic Archipelago, Ann. Glaciol., 52, 215-224, doi:10.3189/172756411795931534, 2011.
Parmentier, F.-J. W., Christensen, T. R., Sørensen, L. L., Rysgaard, S., McGuire, A. D., Miller, P. A., and Walker, D. A.: The impact of lower sea-ice extent on Arctic greenhouse-gas exchange, Nature Climate Change, 3, 195-202, doi:10.1038/NCLIMATE1784, 2013.
Perovich, D. K., Tucker, W. B., and Ligett, K. A.: Aerial observations of the evolution of ice surface conditions during summer, J. Geophys. Res., 107, 8048, doi:10.1029/2000JC000449, 2002.
Perovich, D. K., Jones, K. F., Light, B., Eicken, H., Markus, T., Stroeve, J., and Lindsay, R.: Solar partitioning in a changing Arctic sea-ice cover, Ann. Glaciol., 52, 192-196, 2011.
Polashenski, C., Perovich, D., and Courville, Z.: The mechanisms of sea ice melt pond formation and evolution, J. Geophys. Res., 117, C01001, doi:10.1029/2011JC007231, 2012.
Rösel, A. and Kaleschke, L.: Exceptional melt pond occurrence in the years 2007 and 2011 on the Arctic sea ice revealed from MODIS satellite data, J. Geophys. Res., 117, C05018, doi:10.1029/2011JC007869, 2012.
Rysgaard, S., Glud, R. N., Sejr, M. K., Bendtsen, J., and Christensen, P. B.: Inorganic carbon transport during sea ice growth and decay: a carbon pump in polar seas, J. Geophys. Res., 112, C03016, doi:10.1029/2006JC003572, 2007.
Rysgaard, S., Bendtsen, J., Delille, B., Dieckmann, G. S., Glud, R. N., Kennedy, H., Mortensen, J., Papadimitriou, S., Thomas, D. N., and Tison, J. L.: Sea ice contribution to the air-sea CO2 exchange in the Arctic and Southern Oceans, Tellus B, 63, 823-830, 2011.
Rysgaard, S., Glud, R. N., Lennert, K., Cooper, M., Halden, N., Leakey, R. J. G., Hawthorne, F. C., and Barber, D.: Ikaite crystals in melting sea ice - implications for pCO2 and pH levels in Arctic surface waters, The Cryosphere, 6, 901-908, doi:10.5194/tc- 6-901-2012, 2012a.
Rysgaard, S., Mortensen, J., Juul-Pedersen, T., Sørensen, L. L., Lennert, K., Søgaard, D. H., Arendt, K. E., Blicher, M. E., Sejr, M. K., and Bendtsen, J.: High air-sea CO2 uptake rates in nearshore and shelf areas of Southern Greenland: temporal and spatial variability, Mar. Chem., 128-129, 26-33, 2012b.
Rysgaard, S., Søgaard, D. H., Cooper, M., Púcko, M., Lennert, K., Papakyriakou, T. N., Wang, F., Geilfus, N. X., Glud, R. N., Ehn, J., McGinnis, D. F., Attard, K., Sievers, J., Deming, J. W., and Barber, D.: Ikaite crystal distribution in winter sea ice and implications for CO2 system dynamics, The Cryosphere, 7, 707-718, doi:10.5194/tc-7-707-2013, 2013.
Rysgaard, S., Wang, F., Galley, R. J., Grimm, R., Notz, D., Lemes, M., Geilfus, N.-X., Chaulk, A., Hare, A. A., Crabeck, O., Else, B. G. T., Campbell, K., Sørensen, L. L., Sievers, J., and Papakyriakou, T.: Temporal dynamics of ikaite in experimental sea ice, The Cryosphere, 8, 1469-1478, doi:10.5194/tc-8-1469- 2014, 2014.
Semiletov, I. P., Makshtas, A., Akasofu, S. I., and Andreas, E. L.: Atmospheric CO2 balance: the role of Arctic sea ice, Geophys. Res. Lett., 31, L05121, doi:10.1029/2003GL017996, 2004.
Søgaard, D. H., Thomas, D. N., Rysgaard, S., Norman, L., Kaartokallio, H., Juul-Pedersen, T., Glud, R. N., and Geilfus, N. X.: The relative contributions of biological and abiotic processes to the carbon dynamics in subarctic sea ice, Polar Biol., 36, 1761-1777, doi:10.1007/s00300-013-1396-3, 2013.
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. E., Schuster, U., Metzl, N., Inoue, H. Y., Ishii, M., Midorikawa, T., Nojiri, Y., Kortzinger, A., Steinhoff, T., Hoppenma, M., Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., and de Baar, H. J. W.: Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans, Deep-Sea Res. Pt. II, 56, 554-577, 2009.
Taylor, P. D. and Feltham, D. L.: A model of melt pond evolution on sea ice, J. Geophys. Res., 109, C12007, doi:10.1029/2004JC002361, 2004.
Untersteiner, N.: Natural desalination and equilibrium salinity profile of perennial sea ice, J. Geophys. Res., 73, 1251-1257, 1968.
Weeks, W. F. (Ed.): On Sea Ice, Fairbanks, Alaska, 664 pp., 2010.
Zeebe, R. E. andWolf-Gladrow, D.: CO2 in Seawater: Equilibrium, Kinetics, Isotopes, Elsevier, 2001.
Zeebe, R. E., Eicken, H., Robinson, D. H., WolfGladrow, D., and Dieckmann, G. S.: Modeling the heating and melting of sea ice through light absorption by microalgae, J. Geophys. Res., 101, 1163-1181, 1996.
Zhou, J. Y., Delille, B., Eicken, H., Vancoppenolle, M., Brabant, F., Carnat, G., Geilfus, N. X., Papakyriakou, T., Heinesch, B., and Tison, J. L.: Physical and biogeochemical properties in landfast sea ice (Barrow, Alaska): insights on brine and gas dynamics across seasons, J. Geophys. Res.-Oceans, 118, 3172-3189, 2013.