Arctic; Biogenic gas fluxes; DMS; Gas exchanges; Sea ice; Oceanography; Environmental Engineering; Ecology; Geotechnical Engineering and Engineering Geology; Geology; Atmospheric Science
Abstract :
[en] This paper presents the first empirical estimates of dimethyl sulfide (DMS) gas fluxes across permeable sea ice in the Arctic. DMS is known to act as a major potential source of aerosols that strongly influence the Earth’s radiative balance in remote marine regions during the ice-free season. Results from a sampling campaign, undertaken in 2015 between June 2 and June 28 in the ice-covered Western Baffin Bay, revealed the presence of high algal biomass in the bottom 0.1-m section of sea ice (21 to 380 µg Chl a L–1) combined with the presence of high DMS concentrations (212–840 nmol L–1). While ice algae acted as local sources of DMS in bottom sea ice, thermohaline changes within the brine network, from gravity drainage to vertical stabilization, exerted strong control on the distribution of DMS within the interior of the ice. We estimated both the mean DMS molecular diffusion coefficient in brine (5.2 × 10–5 cm2 s–1 ± 51% relative S.D., n = 10) and the mean bulk transport coefficient within sea ice (33 × 10–5 cm2 s–1 ± 41% relative S.D., n = 10). The estimated DMS fluxes ± S.D. from the bottom ice to the atmosphere ranged between 0.47 ± 0.08 µmol m–2 d–1 (n = 5, diffusion) and 0.40 ± 0.15 µmol m–2 d–1 (n = 5, bulk transport) during the vertically stable phase. These fluxes fall within the lower range of direct summer sea-to-air DMS fluxes reported in the Arctic. Our results indicate that upward transport of DMS, from the algal-rich bottom of first-year sea ice through the permeable sea ice, may represent an important pathway for this biogenic gas toward the atmosphere in ice-covered oceans in spring and summer.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Gourdal, Margaux; Département de biologie, Québec-Océan and Unité Mixte Internationale TAKUVIK, CNRS-Université Laval, Québec, Canada
Crabeck, Odile ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) ; Centre for Ocean and Atmospheric Sciences, School of Environment, University of East-Anglia, United Kingdom
Lizotte, Martine; Département de biologie, Québec-Océan and Unité Mixte Internationale TAKUVIK, CNRS-Université Laval, Québec, Canada
Galindo, Virginie; Institut des sciences de la mer de Rimouski (ISMER), Université du Québec à Rimouski, Rimouski, Canada
Gosselin, Michel; Institut des sciences de la mer de Rimouski (ISMER), Université du Québec à Rimouski, Rimouski, Canada
Babin, Marcel; Département de biologie, Québec-Océan and Unité Mixte Internationale TAKUVIK, CNRS-Université Laval, Québec, Canada
Scarratt, Michael; Maurice Lamontagne Institute, Fisheries and Oceans Canada, Mont-Joli, Canada
Levasseur, Maurice; Département de biologie, Québec-Océan and Unité Mixte Internationale TAKUVIK, CNRS-Université Laval, Québec, Canada
Language :
English
Title :
Upward transport of bottom-ice dimethyl sulfide during advanced melting of arctic first-year sea ice
The authors would like to start by acknowledging the highly valuable input of the two reviewers, Jean-Louis Tison and the anonymous referee, who provided very helpful comments. We warmly thank the reviewers for their work. The authors are especially indebted to Thomas Lacour, and Simon Lambert-Girard for participating in the sample collection. The authors also wish to thank Joannie Ferland for her logistical support before and during the field campaign, as well as for providing some of the chlorophyll a data. We thank Guillaume Mass\u00E9 for providing the meteorological data and some of the material used during this study. We are thankful to R\u00E9mi Amiraux for participating in the snow salinity sampling. This project would not have been possible without the support of the Hamlet of Qikiqtarjuaq and the members of the community, as well as the Inuksuit School and its Principal, Jacqueline Arsenault. The project is conducted under the scientific coordination of the Canada Excellence Research Chair on Remote Sensing of Canada\u2019s New Arctic Frontier and the CNRS and Universit\u00E9 Laval Takuvik Joint International Laboratory (UMI3376). The field campaign was successful thanks to the contributions of J. Ferland, G. B\u00E9cu, C. Marec, J. Lagunas, F. Bruyant, J. Larivi\u00E8re, E. Rehm, S. Lambert-Girard, C. Aubry, C. Lalande, A. LeBaron, C. Marty, J. Sansoulet, D. Christiansen-Stowe, A. Wells, M. Beno\u00EEt-Gagn\u00E9, E. Devred and M.-H. Forget from the Takuvik laboratory, and C.J. Mundy from University of Manitoba and F. Pinczon du Sel and E. Brossier from Vagabond. We also thank Canada Economic Development, Qu\u00E9bec-Oc\u00E9an, the CCGS Amundsen and the Polar Continental Shelf Program for their in-kind contribution in polar logistic and scientific equipment. Financial support to Margaux Gourdal during her doctoral studies was provided by scholarships from Qu\u00E9bec Oc\u00E9an, Fondation Universit\u00E9 Laval, Takuvik UMI and the Canada Excellence Chair in Remote Sensing of Canada\u2019s New Arctic Frontier (Marcel Babin/Universt\u00E9 Laval) and stipends from NETCARE and Qu\u00E9bec-Oc\u00E9an. The Green Edge project is funded by the following French and Canadian programs and agencies: ANR (Contract #111112), CNES (project #131425), IPEV (project #1164), CSA, Fondation Total, ArcticNet, LEFE and the French Arctic Initiative (GreenEdge project). Partial funding was also provided by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Fonds de Recherche du Qu\u00E9bec Nature et Technologies (FRQNT) through Qu\u00E9bec-Oc\u00E9an. Funding support was also received from the Canadian Museum of Nature for cell count analysis.Financial support to Margaux Gourdal during her doctoral studies was provided by scholarships from Qu\u00E9bec Oc\u00E9an, Fondation Universit\u00E9 Laval, Takuvik UMI and the Canada Excellence Chair in Remote Sensing of Canada\u2019s New Arctic Frontier (Marcel Babin/Universt\u00E9 Laval) and stipends from NETCARE and Qu\u00E9bec-Oc\u00E9an. The Green Edge project is funded by the following French and Canadian programs and agencies: ANR (Contract #111112), CNES (project #131425), IPEV (project #1164), CSA, Fondation Total, ArcticNet, LEFE and the French Arctic Initiative (GreenEdge project). Partial funding was also provided by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Fonds de Recherche du Qu\u00E9bec Nature et Technologies (FRQNT) through Qu\u00E9bec-Oc\u00E9an. Funding support was also received from the Canadian Museum of Nature for cell count analysis.
Andreae, MO and Crutzen, PJ. 1997. Atmospheric aerosols:Biogeochemicalsourcesandroleinatmospheric chemistry. Science 276(5315): 1052–1058. DOI: https://doi.org/10.1126/science.276.5315.1052
Asher, EC, Dacey, JWH, Mills, MM, Arrigo, KR and Tortell, PD. 2011. High concentrations and turnover rates of DMS, DMSP and DMSO in Antarctic sea ice. Geophys Res Lett 38(23). DOI: https://doi.org/10.1029/2011GL049712
Bates, TS, Calhoun, JA and Quinn, PK. 1992. Variations in the methanesulfonate to sulfate molar ratio in sub-micrometer marine aerosol particles over the south Pacific Ocean. J Geophys Res Atmos 97(D9): 9859–9865. DOI: https://doi.org/10.1029/92JD00411
Brimblecombe, P and Shooter, D. 1986. Photo-oxidation of dimethylsulphide in aqueous solution. Mar Chem 19(4): 343–353. DOI: https://doi.org/10.1016/0304-4203(86)90055-1
Carnat, G. 2014. Towards an understanding of the physical and biological controls on the cycling of dimethylsulfide (DMS) in Arctic and Antarctic sea ice [PhD thesis]. Winnipeg: University of Manitoba. Available at: https://mspace.lib.umanitoba.ca/handle/1993/23732.
Carnat, G, Papakyriakou, T, Geilfus, NX, Brabant, F, Delille, B, Vancoppenolle, M, Gilson, G, Zhou, J and Tison, JL. 2013. Investigations on physical and textural properties of arctic first-year sea ice in the Amundsen Gulf, Canada, November 2007–June 2008 (IPY-CFL system study). J Glaciol 59(217): 819–837. DOI: https://doi.org/10.3189/2013JoG12J148
Carnat, G, Zhou, J, Papakyriakou, T, Delille, B, Goossens, T, Haskell, T, Schoemann, V, Fripiat, F, Rintala, JM and Tison, JL. 2014. Physical and biological controls on DMS,P dynamics in ice shelf-influenced fast ice during a winter-spring and a spring-summer transitions. J Geophys Res Ocean 119(5): 2882–2905. DOI: https://doi.org/10.1002/2013JC009381
Carslaw, KS, Lee, LA, Reddington, CL, Pringle, KJ, Rap, A, Forster, PM, Mann, GW, Spracklen, DV, Woodhouse, MT, Regayre, LA and Pierce, JR. 2013. Large contribution of natural aerosols to uncertainty in indirect forcing. Nature 503(7474): 67–71. DOI: https://doi.org/10.1038/nature12674
Cota, GF and Sullivan, CW. 1990. Photoadaptation, growth and production of bottom ice algae in the Antarctic. J Phycol 26: 399–411. DOI: https://doi.org/10.1111/j.0022-3646.1990.00399.x
Crabeck, O, Delille, B, Rysgaard, S, Thomas, DN, Geilfus, NX, Else, B and Tison, JL. 2014. First “in situ” determination of gas transport coefficients (DO2, DAr and DN2) from bulk gas concentration measurements (O2, N2, Ar) in natural sea ice. J Geophys Res Oceans 119(10): 6655–6668. DOI: https://doi.org/10.1002/2014JC009849
Crabeck, O, Galley, RJ, Mercury, L, Delille, B, Tison, J-L and Rysgaard, S. 2019. Evidence of freezing pressure in sea ice discrete brine inclusions and its impact on aqueous-gaseous equilibrium. J Geophys Res Oceans 124: 1660–1678. DOI: https://doi.org/10.1029/2018JC014597
Curran, MAJ and Jones, GB. 2000. Dimethyl sulfide in the Southern Ocean: Seasonality and flux. J Geophys Res Atmos 105(D16): 20451–20459. DOI: https://doi.org/10.1029/2000JD900176
Dacey, JWH, Wakeham, SG and Howes, BL. 1984. Henry’s law constant for dimethyl sulfide in freshwater and seawater. Geophys Res Lett 11(10): 991–994. DOI: https://doi.org/10.1029/GL011i010p00991
Damm, E, Nomura, D, Martin, A, Dieckmann, GS and Meiners, KM. 2016. DMSP and DMS cycling within Antarctic sea ice during the winter–spring transition. Deep-Sea Res Part II 131: 150–159. Elsevier. DOI: https://doi.org/10.1016/j.dsr2.2015.12.015
DiTullio, GR, Grebmeier, JM, Arrigo, KR, Lizotte, MP, Robinson, DH, Leventer, A, Barry, JP, VanWoert, ML and Dunbar, RB. 2000. Rapid and early export of Phaeocystis antarctica blooms in the Ross Sea, Antarctica. Nature 404(6778): 595. DOI: https://doi.org/10.1038/35007061
Elliott, A, Mundy, CJ, Gosselin, M, Poulin, M, Campbell, K and Wang, F. 2015. Spring production of mycosporine-like amino acids and other UV-absorbing compounds in sea ice-associated algae communities in the Canadian Arctic. Mar Ecol Prog Ser 541: 91–104. DOI: https://doi.org/10.3354/meps11540
Fanning, KA and Torres, LM. 1991. 222Rn and 226Ra: indicators of sea-ice effects on air-sea gas exchange. Polar Res 10(1): 51–58. DOI: https://doi.org/10.1111/j.1751-8369.1991.tb00634.x
Fortier, M, Fortier, L, Michel, C and Legendre, L. 2002. Climatic and biological forcing of the vertical flux of biogenic particles under seasonal Arctic sea ice. Mar Ecol Prog Ser 225: 1–16. DOI: https://doi.org/10.3354/meps225001
Freitag, J. 1999. Untersuchungen zur Hydrologie des arktischen Meereises: Konsequenzen für den kleinskaligen Stofftransport. The hydraulic properties of Arctic sea-ice: Implications for the small scale particle transport. Berichte zur Polarforschung (Reports on polar research) 325: 150. Bremerhaven: Alfred Wegener Institute for Polar and Marine Research. DOI: https://doi.org/10.2312/BzP_0325_1999
Galindo, V, Gosselin, M, Lavaud, J, Mundy, CJ, Else, B, Ehn, J, Babin, M and Rysgaard, S. 2017. Pigment composition and photoprotection of Arctic sea ice algae during spring. Mar Ecol Prog Ser 585: 49–69. DOI: https://doi.org/10.3354/meps12398
Galindo, V, Levasseur, M, Mundy, CJ, Gosselin, M, Tremblay, JÉ, Scarratt, M, Gratton, Y, Papakyriakou, T, Poulin, M and Lizotte, M. 2014. Biological and physical processes influencing sea ice, under-ice algae, and dimethylsulfonio-propionate during spring in the Canadian Arctic Archipelago. J Geophys Res Ocean 119: 3746–3766. DOI: https://doi.org/10.1002/2013JC009497
Galindo, V, Levasseur, M, Scarratt, M, Mundy, CJ, Gosselin, M, Kiene, RP, Gourdal, M and Lizotte, M. 2015. Under-ice microbial dimethylsulfonio-propionate metabolism during the melt period in the Canadian Arctic Archipelago. Mar Ecol Progr Ser 524: 39–53. DOI: https://doi.org/10.3354/ meps11144
Gambaro, A, Moret, I, Piazza, R, Andreoli, C, Da Rin, E, Capodaglio, G, Barbante, C and Cescon, P. 2004. Temporal evolution of DMS and DMSP in Antarctic Coastal Sea water. Int J Environ Anal Chem 84(6–7): 401–412. DOI: https://doi.org/10.1080/03067310 310001636983
Garcia, HE and Gordon, LI. 1992. Oxygen solubility in seawater: Better fitting equations. Limnol Oceanogr 37(6): 1307–1312. DOI: https://doi.org/10.4319/lo.1992.37.6.1307
Garrison, DL and Buck, KR. 1986. Organism losses during ice melting: A serious bias in sea ice community studies. Polar Biol 6(4): 237–239. DOI: https://doi.org/10.1007/BF00443401
Golden, KM, Ackley, SF and Lytle, VI. 1998. The percolation phase transition in sea ice. Science 282(5397): 2238–2241. DOI: https://doi.org/10.1126/science.282.5397.2238
Golden, KM, Eicken, H, Heaton, AL, Miner, J, Pringle, DJ and Zhu, J. 2007. Thermal evolution of permeability and microstructure in sea ice. Geophys Res Lett 34(16): 2–7. DOI: https://doi.org/10.1029/2007GL030447
Gosselin, M, Levasseur, M, Wheeler, PA, Horner, RA and Booth, BC. 1997. New measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep-Sea Res Pt II 44(8): 1623–1644. DOI: https://doi.org/10.1016/S0967-0645(97)00054-4
Gourdal, M, Lizotte, M, Massé, G, Gosselin, M, Poulin, M, Scarratt, M, Charrette, J and Levasseur, M. 2018. Dimethyl sulfide dynamics in first-year sea ice melt ponds in the Canadian Arctic Archipelago. Biogeosci Discuss 15: 3169–3188. DOI: https://doi.org/10.5194/bg-15-3169-2018
Green, TK and Hatton, AD. 2014. The Claw Hypothesis: A new perspective on the role of biogenic sulphur in the regulation of global climate. Oceanogr Mar Biol 52: 315–336. DOI: https://doi.org/10.1201/ b17143-7
Hatton, AD, Shenoy, DM, Hart, MC, Mogg, A and Green, DH. 2012. Metabolism of DMSP, DMS and DMSO by the cultivable bacterial community associated with the DMSP-producing dinoflagellate Scrippsiella tro-choidea. Biogeochemistry 110(1–3): 131–146. DOI: https://doi.org/10.1007/s10533-012-9702-7
Holm-Hansen, O, Lorenzen, CJ, Holmes, RW and Strickland, JDH. 1965. Fluorometric determination of chlorophyll. J Cons Int Explor Mer 30: 3−15. DOI: https://doi.org/10.1093/icesjms/30.1.3
Horner, R, Ackley, SF, Dieckmann, GS, Guiliksen, B, Hoshiap, T, Melnikov, IA, Reeburgh, WS, Spindler, M and Sullivan, CW. 1992. Ecology of sea ice biota. 1. Habitat, terminology, and methodology. Polar Biol 12: 417–427. DOI: https://doi.org/10.1007/BF00243113
Jardon, FP, Vivier, F, Vancoppenolle, M, Lourenço, A, Bouruet-Aubertot, P and Cuypers, Y. 2013. Full-depth desalination of warm sea ice. J Geophys Res Ocean 118(1): 435–447. DOI: https://doi.org/10.1029/2012JC007962
Johnson, MT. 2010. A numerical scheme to calculate temperature and salinity dependent air-water transfer velocities for any gas. Ocean Science 6(4): 913–932. DOI: https://doi.org/10.5194/os-6-913-2010
Juhl, AR, Krembs, C and Meiners, KM. 2011. Seasonal development and differential retention of ice algae and other organic fractions in first-year Arctic sea ice. Mar Ecol Prog Ser 436: 1–16. DOI: https://doi.org/10.3354/meps09277
Karsten, U, Kück, K, Vogt, C and Kirst, GO. 1996. Dimethylsulfoniopropionate production in photo-trophic organisms and its physiological functions as a cryoprotectant. In: Kiene, RP, Visscher, P, Keller, MD and Kirst, GO (eds.), Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds, 143–153. Boston: Springer. DOI: https://doi.org/10.1007/978-1-4613-0377-0_13
Kawamura, T, Shirasawa, K, Ishikawa, N, Lindfors, A, Rasmus, K, Granskog, MA, Ehn, J, Leppäranta, M, Martma, T and Vaikmäe, R. 2001. Time-series observations of the structure and properties of brackish ice in the Gulf of Finland. Annals Glaciol 33: 1–4. DOI: https://doi.org/10.3189/172756401781818950
Kieber, DJ, Jiao, J, Kiene, RP and Bates, TS. 1996. Impact of dimethylsulfide photochemistry on methyl sulfur cycling in the equatorial Pacific Ocean. J Geophys Res 101(C2): 3715–3722. DOI: https://doi.org/10.1029/95JC03624
King, DB and Saltzman, ES. 1993. Experimental determination of the diffusion coefficient of dimethylsulfide in water. J Geophys Res 98(C9): 16481. DOI: https://doi.org/10.1029/93JC01858
Kirst, GO, Thiel, C, Wolff, H, Nothnagel, J, Wanzek, M and Ulmke, R. 1991. Dimethylsulfoniopropionate (DMSP) in ice algae and its possible biological role. Mar Chem 35(1–4): 381–388. DOI: https://doi.org/10.1016/S0304-4203(09)90030-5
Lana, A, Simó, R, Vallina, SM and Dachs, J. 2011. Re-examination of global emerging patterns of ocean DMS concentration. Biogeochemistry 110(1–3): 173–182. DOI: https://doi.org/10.1007/ s10533-011-9677-9
Lavoie, D, Denman, K and Michel, C. 2005. Modeling ice algal growth and decline in a seasonally ice-covered region of the Arctic (Resolute Passage, Canadian Archipelago). J Geophys Res Ocean 110(11): 1–17. DOI: https://doi.org/10.1029/2005JC002922
Lee, SH, Stockwell, DA, Joo, HM, Son, YB, Kang, CK and Whitledge, TE. 2012. Phytoplankton production from melting ponds on Arctic sea ice. J Geophys Res Ocean 117: C04030. DOI: https://doi.org/10.1029/2011JC007717
Leppäranta, M and Manninen, T. 1988. The brine and gas content of sea ice with attention to low salinities and high temperatures. Finnish Institute of Marine Research Internal Report 1988(2): 15. Available at http://aquaticcommons.org/6760/.
Levasseur, M, Gosselin, M and Michaud, S. 1994. A new source of dimethylsulfide (DMS) for the arctic atmosphere: ice diatoms. Mar Biol 121(2): 381–387. DOI: https://doi.org/10.1007/BF00346748
Lin, L, He, J, Zhang, F, Cao, S and Zhang, C. 2016. Algal bloom in a melt pond on Canada Basin pack ice. Polar Rec 52(1): 114–117. DOI: https://doi.org/10.1017/S0032247415000510
Liss, PS and Merlivat, L. 1986. Air-sea gas exchange rates: Introduction and synthesis. In: Buat-Ménard, P (ed.), The Role of Air-Sea Exchange in Geochemical Cycling, 113–127. Dordrecht: Springer. DOI: https://doi.org/10.1007/978-94-009-4738-2_5
Loose, B, McGillis, WR, Schlosser, P, Perovich, D and Takahashi, T. 2009. Effects of freezing, growth, and ice cover on gas transport processes in laboratory seawater experiments. Geophys Res Lett 36(5): L05603. DOI: https://doi.org/10.1029/2008GL036318
Loose, B, Schlosser, P, Perovich, D, Ringelberg, D, Ho, DT,Takahashi,T,Richter-Menge,J,Reynolds,CM, Mcgillis, WR and Tison, J-L. 2011. Gas diffusion through columnar laboratory sea ice: implications for mixed-layer ventilation of CO2 in the seasonal ice zone. Tellus B 63(1): 23–39. DOI: https://doi.org/10.1111/j.1600-0889.2010.00506.x
Lyon, BR, Bennett-Mintz, JM, Lee, PA, Janech, MG and Ditullio, GR. 2016. Role of dimethylsulfo-niopropionate as an osmoprotectant following gradual salinity shifts in the sea-ice diatom Fragilar-iopsis cylindrus. Environ Chem 13(2): 181–194. DOI: https://doi.org/10.1071/EN14269
Miller, LA, Fripiat, F, Else, BGT, Bowman, JS, Brown, KA, Collins, RE, Ewert, M, Fransson, A, Gosselin, M, Lannuzel, D, Meiners, KM, Michel, C, Nish-ioka, J, Nomura, D, Papadimitriou, S, Russell, LM, Sørensen, LL, Thomas, DN, Tison, J-L, van Leeuwe, MA, Vancoppenolle, M, Wolff, EW and Zhou, J. 2015. Methods for biogeochemical studies of sea ice: The state of the art, caveats, and recommendations. Elem Sci Anth 3: 000038. DOI: https://doi.org/10.12952/journal.elementa.000038
Moreau, S, Vancoppenolle, M, Zhou, J, Tison, J-L, Delille, B and Goosse, H. 2014. Modelling argon dynamics in first-year sea ice. Ocean Modelling 73: 1–18. DOI: https://doi.org/10.1016/j.ocemod.2013.10.004
Mundy, CJ, Barber, DG and Michel, C. 2005. Variability of snow and ice thermal, physical and optical properties pertinent to sea ice algae biomass during spring. J Mar Syst 58(3–4): 107–120. DOI: https://doi.org/10.1016/j.jmarsys.2005.07.003
Mundy, CJ, Gosselin, M, Ehn, JK, Belzile, C, Poulin, M, Alou, E, Roy, S, Hop, H, Lessard, S, Papakyriakou, TN and Barber, DG. 2011. Characteristics of two distinct high-light acclimated algal communities during advanced stages of sea ice melt. Polar Biol 34(12): 1869–1886. DOI: https://doi.org/10.1007/ s00300-011-0998-x
Mundy, CJ, Gosselin, M, Gratton, Y, Brown, K, Galindo, V, Campbell, K, Levasseur, M, Barber, D, Papakyriakou, T and Bélanger, S. 2014. Role of environmental factors on phytoplankton bloom initiation under landfast sea ice in Resolute Passage, Canada. Mar Ecol Prog Ser 497: 39–49. DOI: https://doi.org/10.3354/meps10587
Mungall, EL, Croft, B, Lizotte, M, Thomas, JL, Murphy, JG, Levasseur, M, Randall, VM, Wentzell, JJB, Liggio, J and Abbatt, JPD. 2016. Dimethyl sulfide in the summertime Arctic atmosphere: measurements and source sensitivity simulations. Atmos Chem Phys 16(11): 6665–6680. DOI: https://doi.org/10.5194/ acp-16-6665-2016
Niki, T, Kunugi, M and Otsuki, A. 2000. DMSP-lyase activity in five marine phytoplankton species: its potential importance in DMS production. Mar Biol 136(5): 759–764. DOI: https://doi.org/10.1007/ s002279900235
Nomura, D, Koga, S, Kasamatsu, N, Shinagawa, H, Simizu, D, Wada, M and Fukuchi, M. 2012. Direct measurements of DMS flux from Antarctic fast sea ice to the atmosphere by a chamber technique. J Geophys Res 117(C4): C04011. DOI: https://doi.org/10.1029/2010JC006755
Notz, D. 2005. Thermodynamic and fluid-dynamical processes in sea ice. [PhD thesis]. University of Cambridge. Available at https://www.researchgate.net/publication/267564215_Thermodynamic_and_ Fluid-Dynamical_Processes_in_Sea_Ice.
Notz, D and Worster, MG. 2008. In situ measurements of the evolution of young sea ice. J Geophys Res Ocean 113: C03001. DOI: https://doi.org/10.1029/2007JC004333
Notz, D and Worster, MG. 2009. Desalination processes of sea ice revisited. J Geophys Res Ocean 114: C05006. DOI: https://doi.org/10.1029/2008JC004885
Nozais, C, Gosselin, M, Michel, C and Tita, G. 2001. Abundance, biomass, composition and grazing impact of the sea-ice meiofauna in the North water, Northern Baffin Bay. Mar Ecol Prog Ser 217: 235–250. DOI: https://doi.org/10.3354/meps217235
Oziel, L, Massicotte, P, Randelhoff, A, Ferland, J, Vladoiu, A, Lacour, L, Galindo, V, Lambert-Girard, S, Dumont, D, Cuypers, Y, Bouruet-Aubertot, P, Mundy, C-J, Ehn, J, Bécu, G, Marec, C, Forget, M-H, Garcia, N, Coupel, P, Raimbault, P, Houssais, M-N and Babin, M. 2019. Environmental factors influencing the seasonal dynamics of under-ice spring blooms in Baffin Bay. Elem Sci Anth (submitted).
Pandey, SK and Kim, K-H. 2009. A review of methods for the determination of reduced sulfur compounds (RSCs) in air. Environ Sci Technol 43(9): 3020–3029. DOI: https://doi.org/10.1021/es803272f
Papakyriakou, T and Miller, L. 2011. Springtime CO2 exchange over seasonal sea ice in the Canadian Arctic Archipelago. Ann Glaciol 52(57): 215–224. DOI: https://doi.org/10.3189/172756411795931534
Parsons, TR, Harrison, PJ, Acreman, JC, Dovey, HM, Thompson, PA, Lalli, CM, Lee, K, Guanguo, L and Xiaolin, C. 1984. An experimental marine ecosystem response to crude oil and Corexit 9527: Part 2—biological effects. Mar Env Res 13(4): 265–275. DOI: https://doi.org/10.1016/0141-1136(84)90033-3
Petrich, C and Eicken, H. 2010. Growth, structure and properties of sea ce. In: Thomas, DN and Dieckmann, GS (eds.), Sea Ice, 2nd ed. Oxford: Blackwell Science, 23–78. DOI: https://doi.org/10.1002/9781444317145.ch2
Pio, C, Cerqueira, M, Castro, LM and Salgueiro, ML. 1996. Sulphur and nitrogen compounds in variable marine/continental air masses at the southwest European coast. Atmos Environ 30(18): 3115–3127. DOI: https://doi.org/10.1016/1352-2310(96)00059-3
Polashenski, C, Golden, KM and Perovich, DK. 2017. Percolation blockage: A process that enables melt pond formation on first year Arctic Sea ice. J Geophys Res Oceans 122(1): 1–28. DOI: https://doi.org/10.1002/2016JC011994
Sharma, S, Barrie, L, Plummer, D, McConnell, JC, Brickell, PC, Levasseur, M, Gosselin, M and Bates, TS. 1999. Flux estimation of oceanic dimethyl sulfide around North America. J Geophys Res 104(D17): 21327. DOI: https://doi.org/10.1029/1999JD900207
Shaw, MD, Carpenter, LJ, Baeza-Romero, MT and Jackson, AV. 2011. Thermal evolution of diffusive transport of atmospheric halocarbons through artificial sea–ice. Atmos Environ 45(35): 6393–6402. DOI: https://doi.org/10.1016/j.atmosenv.2011.08.023
Simpson, WR, Carlson, D, Hönninger, G, Douglas, T, Sturm, M, Perovich, D and Platt, U. 2007. First-year sea-ice contact predicts bromine monoxide (BrO) levels at Barrow, Alaska better than potential frost flower contact. Atmos Chem Phys 7(3): 621–627. DOI: https://doi.org/10.5194/acp-7-621-2007
Skyllingstad, ED and Paulson, CA. 2007. A numerical study of melt ponds. J Geophys Res Oceans 112(C8): 1–20. DOI: https://doi.org/10.1029/2006JC003729
Smith, REH, Harrison, WG, Harris, LR and Herman, AW. 1990. Vertical fine structure of particulate matter and nutrients in sea ice of the high Arctic. Can J Fish Aquat Sci 47(7): 1348–1355. DOI: https://doi.org/10.1139/f90-154
Sokal, RR and Rohlf, FJ. 1995. Biometry: The Principles and Practice of Statistics in Biological Research, 3rd ed., New York: W. H. Freeman.
Stauffer, B, Neftel, A, Oeschger, H and Schwander, J. 1985. CO2 concentration in air extracted from Greenland ice samples. In: Langway, C, Oeschger, H and Dansgaard, W (eds.), Greenland Ice Core: Geophysics, Geochemistry, and the Environment. Washington, DC; American Geophysical Union. DOI: https://doi.org/10.1029/GM033p0085
Sunda, W, Kieber, DJ, Kiene, RP and Huntsman, S. 2002. An antioxidant function for DMSP and DMS in marine algae. Nature 418(6895): 317–20. DOI: https://doi.org/10.1038/nature00851
Taalba, A, Xie, H, Scarratt, MG, Bélanger, S and Levasseur, M. 2013. Photooxidation of dimethylsulfide (DMS) in the Canadian Arctic. Biogeosciences 10(11): 6793–6806. DOI: https://doi.org/10.5194/ bg-10-6793-2013
Timco, GW and Frederking, RMW. 1996. A review of sea ice density. Cold Reg Sci Technol 24(1): 1–6. DOI: https://doi.org/10.1016/0165-232X(95)00007-X
Tison, JL, Brabant, F, Dumont, I and Stefels, J. 2010. High-resolution dimethyl sulfide and dimethylsulfo-niopropionate time series profiles in decaying summer first-year sea ice at Ice Station Polarstern, western Weddell Sea, Antarctica. J Geophys Res 115(4): 1–16. DOI: https://doi.org/10.1029/2010JG001427
Tison, JL, Delille, B and Papadimitriou, S. 2017. Gases in sea ice. In: Thomas, DN (ed.), Sea ice, 3rd ed., Chichester, UK: John Wiley & Sons. DOI: https://doi.org/10.1002/9781118778371.ch18
Tison, J-L, Jourdain, B, Borges, AV, Delille, B and Delille, D. 2007. Biogas (CO2, O2, dimethylsulfide) dynamics in spring Antarctic fast ice. Limnol Oceanogr 52(4): 1367–1379. DOI: https://doi.org/10.4319/lo.2007.52.4.1367
Toole, DA, Kieber, DJ, Kiene, RP, White, EM, Bisgrove, JD, del Valle, DA and Slezak, D. 2004. High dimethylsulfide photolysis rates in nitrate-rich Antarctic waters. Geophys Res Lett 31(11): DOI: https://doi.org/10.1029/2004GL019863
Trevena, A and Jones, G. 2012. DMS flux over the Antarctic sea ice zone. Mar Chem 134–135: 47–58. DOI: https://doi.org/10.1016/j.marchem.2012.03.001
Trevena, AJ and Jones, GB. 2006. Dimethylsulphide and dimethylsulphoniopropionate in Antarctic sea ice and their release during sea ice melting. Mar Chem 98(2–4): 210–222. DOI: https://doi.org/10.1016/j.marchem.2005.09.005
Turner, SM, Nightingale, PD, Broadgate, W and Liss, PS. 1995. The distribution of dimethyl-sulphide and dimethylsulphoniopropionate in Antarctic waters and sea ice. Deep-Sea Res II 42(4–5): 1059–1080. DOI: https://doi.org/10.1016/0967-0645(95)00066-Y
Vancoppenolle, M, Goosse, H, de Montety, A, Fichefet, T, Tremblay, B and Tison, J-L. 2010. Modeling brine and nutrient dynamics in Antarctic sea ice: The case of dissolved silica. J Geophys Res 115: C02005. DOI: https://doi.org/10.1029/2009JC005369
Vancoppenolle, M, Meiners, KM, Michel, C, Bopp, L, Brabant, F, Carnat, G, Delille, B, Lannuzel, D, Madec, G, Moreau, S, Tison, J-L and van der Merwe, P. 2013. Role of sea ice in global biogeochemical cycles: emerging views and challenges. Quat Sci Rev 79: 207–230. DOI: https://doi.org/10.1016/j.quascirev.2013.04.011
Vancoppenolle, M, Notz, D, Vivier, F, Tison, J-L, Delille, B, Carnat, G, Zhou, J, Jardon, F, Griewank, P and Lourenço, A. 2013. Technical Note: On the use of the mushy-layer Rayleigh number for the interpretation of sea-ice-core data. Cryosphere Discuss 7: 3209–3230. DOI: https://doi.org/10.5194/ tcd-7-3209-2013
Vogt, M and Liss, PS. 2009. Dimethylsulfide and climate. Geophys Monogr Ser 187: 197–232. DOI: https://doi.org/10.1029/2008GM000790
Wolfe, GV, Levasseur, M, Cantin, G and Michaud, S. 1999. Microbial consumption and production of dimethyl sulfide (DMS) in the Labrador Sea. Aquat Microb Ecol 18(2): 197–205. DOI: https://doi.org/10.3354/ame018197
Zemmelink, H, Gieskes, WW, Holland, P and Dacey, JW. 2002. Preservation of atmospheric dimethyl sulphide samples on Tenax in sea-to-air flux measurements. Atmos Environ 36(5): 911–916. DOI: https://doi.org/10.1016/S1352-2310(01)00535-0
Zemmelink, HJ, Houghton, L, Liss, PS, Hintsa, EJ and Dacey, JWH. 2008. Dimethylsulfide emissions over the multi-year ice of the western Weddell Sea. Geophys Res Lett 35(6): L06603. DOI: https://doi.org/10.1029/2007GL031847
Zhou, J, Delille, B, Eicken, H, Vancoppenolle, M, Brabant, F, Carnat, G, Geilfus, NX, Papakyriakou, T, Heinesch, B and Tison, JL. 2013. Physical and biogeochemical properties in landfast sea ice (Barrow, Alaska): Insights on brine and gas dynamics across seasons. J Geophys Res Ocean 118(6): 3172–3189. DOI: https://doi.org/10.1002/jgrc.20232