[en] Sea ice is difficult, expensive, and potentially dangerous to observe in nature. The remoteness of the Arctic Ocean and Southern Ocean complicates sampling logistics, while the heterogeneous nature of sea ice and rapidly changing environmental conditions present challenges for conducting process studies. Here, we describe the Roland von Glasow Air-Sea-Ice Chamber (RvG-ASIC), a laboratory facility designed to reproduce polar processes and overcome some of these challenges. The RvG-ASIC is an open-topped 3.5m3 glass tank housed in a cold room (temperature range: 55 to C30 C). The RvG-ASIC is equipped with a wide suite of instruments for ocean, sea ice, and atmospheric measurements, as well as visible and UV lighting. The infrastructure, available instruments, and typical experimental protocols are described. To characterise some of the technical capabilities of our facility, we have quantified the timescale over which our chamber exchanges gas with the outside, l D .0:660:07/ d, and the mixing rate of our experimental ocean, m D .4:2 0:1/ min. Characterising our light field, we show that the light intensity across the tank varies by less than 10% near the centre of the tank but drops to as low as 60% of the maximum intensity in one corner. The temperature sensitivity of our light sources over the 400 to 700 nm range (PAR) is .0:0280:003/Wm2 C1, with a maximum irradiance of 26.4Wm2 at 0 C; over the 320 to 380 nm range, it is .0:160:1/Wm2 C1, with a maximum irradiance of 5.6Wm2 at 0 C. We also present results characterising our experimental sea ice. The extinction coefficient for PAR varies from 3.7 to 6.1m1 when calculated from irradiance measurements exterior to the sea ice and from 4.4 to 6.2m1 when calculated from irradiance measurements within the sea ice. The bulk salinity of our experimental sea ice is measured using three techniques, modelled using a halo-dynamic one-dimensional (1D) gravity drainage model, and calculated from a salt and mass budget. The growth rate of our sea ice is between 2 and 4 cm d1 for air temperatures of .9:20:9/ C and .26:60:9/ C. The PAR extinction coefficients, vertically integrated bulk salinities, and growth rates all lie within the range of previously reported comparable values for first-year sea ice. The vertically integrated bulk salinity and growth rates can be reproduced well by a 1D model. Taken together, the similarities between our laboratory sea ice and observations in nature, as well as our ability to reproduce our results with a model, give us confidence that sea ice grown in the RvG-ASIC is a good representation of natural sea ice.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Thomas, Max ; Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom ; Department of Physics, University of Otago, Dunedin, New Zealand
France, James ; Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom ; British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom ; Department of Earth Sciences, Royal Holloway University of London, Egham, United Kingdom
Crabeck, Odile ; Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS) ; Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom ; Laboratoire de Glaciologie, Université Libre de Bruxelles, Bruxelles, Belgium
Hall, Benjamin; Chemical Engineering Department, University of Cape Town, Cape Town, South Africa
Hof, Verena; Max Planck Institute for Meteorology, Hamburg, Germany
Notz, Dirk ; Max Planck Institute for Meteorology, Hamburg, Germany ; Center for Earth System Research and Sustainability (CEN), University of Hamburg, Hamburg, Germany
Rampai, Tokoloho; Chemical Engineering Department, University of Cape Town, Cape Town, South Africa
Riemenschneider, Leif; Max Planck Institute for Meteorology, Hamburg, Germany
John Tooth, Oliver; Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
Tranter, Mathilde; Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
Kaiser, Jan ; Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
Language :
English
Title :
The Roland von Glasow Air-Sea-Ice Chamber (RvG-ASIC): An experimental facility for studying ocean-sea-ice-atmosphere interactions
Acknowledgements. Roland von Glasow was instrumental in the design, construction, and scientific vision of the facility. Thanks to Bill Sturges, Dorothee Bakker, Martin Vancoppenolle, and Finlo Cottier for their time and scientific input to the RvG-ASIC. Jeremey Wilkinson and Martin King provided much useful advice and loaned us equipment. Thanks also to the technical support at UEA: Andy Macdonald, Stuart Rix, Dave Blomfield, Nick Griffin, Gareth Flowerdue, Ben McLeod, and Nick Garrard. This work received funding from the European Research Council under the European Union\u2019s Seventh Framework Programme (FP7-2007-2013, grant agreement no. 616938) and the Horizon 2020 research and innovation programme through the EUROCHAMP-2020 Infrastructure Activity under grant agreement no. 730997, as well as the University of East Anglia. Oliver Tooth, and Mathilde Tranter were supported by an internship granted by the Environmental Sciences department at UEA.Financial support. This research has been supported by the Eu-
Anderson, D. L. : Growth rate of sea ice, J. Glaciol., 3, 1170-1172, 1961.
Cottier, F., Eicken, H., and Wadhams, P. : Linkages between salinity and brine channel distribution in young sea ice, J. Geophys. Res.-Oceans, 104, 15859-15871, 1999.
Cox, G. F. and Weeks, W. F. : Brine Drainage and Initial Salt Entrapment in Sodium Chloride Ice., Tech. rep., DTIC Document, 1975.
Cox, G. F. and Weeks, W. F. : Numerical simulations of the profile properties of undeformed first-year sea ice during the growth season, J. Geophys. Res., 93, 12449-12460, https://doi. org/10. 1029/JC093iC10p12449, 1988.
De La Rosa, S., Maus, S., and Kern, S. : Thermodynamic investigation of an evolving grease to pancake ice field, Ann. Glaciol., 52, 206-214, 2011.
Dunkle, R. V. and Bevans, J. : An approximate analysis of the solar reflectance and transmittance of a snow cover, J. Meteorol., 13, 212-216, 1956.
Efimova, N. : On methods of calculating monthly values of net longwave radiation, Meterol. Gidrol., 10, 28-33, 1961.
Ehn, J., Granskog, M. A., Reinart, A., and Erm, A. : Optical properties of melting landfast sea ice and underlying seawater in Santala Bay, Gulf of Finland, J. Geophys. Res.-Oceans, 109, C09003, https://doi. org/10. 1029/2003JC002042, 2004.
Eide, L. and Martin, S. : The formation of brine drainage features in young sea ice, J. Glaciol., 14, 137-154, 1975.
Fritsen, C., Lytle, V., Ackley, S., and Sullivan, C. : Autumn bloom of Antarctic pack-ice algae, Science, 266, 782-784, 1994.
Garnett, J., Halsall, C., Thomas, M., France, J., Kaiser, J., Graf, C., Leeson, A., and Wynn, P. : Mechanistic insight into the uptake and fate of persistent organic pollutants in sea ice, Environ. Sci. Technol., 53, 6757-6764, 2019.
Gosink, T. A., Pearson, J. G., and Kelley, J. J. : Gas movement through sea ice, Nature, 263, 41, https://doi. org/10. 1038/263041a0, 1976.
Grenfell, T. C. and Maykut, G. A. : The optical properties of ice and snow in the Arctic Basin, J. Glaciol., 18, 445-463, 1977.
Griewank, P. J. and Notz, D. : Insights into brine dynamics and sea ice desalination from a 1-D model study of gravity drainage, J. Geophys. Res.-Oceans, 118, 3370-3386, 2013.
Griewank, P. J. and Notz, D. : A 1-D modelling study of Arctic sea-ice salinity, The Cryosphere, 9, 305-329, https://doi. org/10. 5194/tc-9-305-2015, 2015.
Hare, A., Wang, F., Barber, D., Geilfus, N.-X., Galley, R., and Rysgaard, S. : pH evolution in sea ice grown at an outdoor experimental facility, Mar. Chem., 154, 46-54, 2013.
Hof, V. : The influence of varying freezing temperature on light transfer in thin sea ice, MSc thesis, University Hamburg, Hamburg, Germany, 2019.
Jeffery, N., Hunke, E., and Elliott, S. : Modeling the transport of passive tracers in sea ice, J. Geophys. Res.-Oceans, 116, C07020, https://doi. org/10. 1029/2010JC006527, 2011.
Jiang, S., Stamnes, K., Li, W., and Hamre, B. : Enhanced solar irradiance across the atmosphere-sea ice interface: a quantitative numerical study, Appl. Opt., 44, 2613-2625, 2005.
Kauko, H. M., Taskjelle, T., Assmy, P., Pavlov, A. K., Mundy, C., Duarte, P., Fernández-Méndez, M., Olsen, L. M., Hudson, S. R., Johnsen, G., Elliott, A., Wang, F., and Granskog, M. A. : Windows in Arctic sea ice: Light transmission and ice algae in a refrozen lead, J. Geophys. Res.-Biogeo., 122, 1486-1505, 2017.
King, M., France, J., Fisher, F., and Beine, H. : Measurement and modelling of UV radiation penetration and photolysis rates of nitrate and hydrogen peroxide in Antarctic sea ice: An estimate of the production rate of hydroxyl radicals in first-year sea ice, J. Photochem. Photobiol. A, 176, 39-49, 2005.
Kotovitch, M., Moreau, S., Zhou, J., Vancoppenolle, M., Dieckmann, G. S., Evers, K.-U., Van der Linden, F., Thomas, D. N., Tison, J.-L., and Delille, B. : Air-ice carbon pathways inferred from a sea ice tank experiment, Elementa, 4, 000112, https://doi. org/10. 12952/journal. elementa. 000112, 2016.
Küpper, F. C., Carpenter, L. J., McFiggans, G. B., Palmer, C. J., Waite, T. J., Boneberg, E.-M., Woitsch, S., Weiller, M., Abela, R., Grolimund, D., Potin, P., Butler, A., Luther III, G. W., Kroneck, P. M. H., Meyer-Klaucke, W., and Feiters, M. C. : Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry, P. Natl. Acad. Sci. USA, 105, 6954-6958, 2008.
Loose, B., McGillis, W., Schlosser, P., Perovich, D., and Takahashi, T. : Effects of freezing, growth, and ice cover on gas transport processes in laboratory seawater experiments, Geophys. Res. Lett., 36, L05603, https://doi. org/10. 1029/2008GL036318, 2009.
Loose, B., Miller, L. A., Elliott, S., and Papakyriakou, T. : Sea ice biogeochemistry and material transport across the frozen interface, Oceanography, 24, 202-218, 2011.
Lovely, A., Loose, B., Schlosser, P., McGillis, W., Zappa, C., Perovich, D., Brown, S., Morell, T., Hsueh, D., and Friedrich, R. : The Gas Transfer through Polar Sea ice experiment: Insights into the rates and pathways that determine geochemical fluxes, J. Geophys. Res.-Oceans, 120, 8177-8194, https://doi. org/10. 1002/2014JC010607, 2015.
Marks, A. A., Lamare, M. L., and King, M. D. : Optical properties of sea ice doped with black carbon-an experimental and radiativetransfer modelling comparison, The Cryosphere, 11, 2867-2881, https://doi. org/10. 5194/tc-11-2867-2017, 2017.
May, N., Quinn, P., McNamara, S., and Pratt, K. : Multiyear study of the dependence of sea salt aerosol on wind speed and sea ice conditions in the coastal Arctic, J. Geophys. Res.-Atmos., 121, 9208-9219, 2016.
McDougall, T. J. and Barker, P. M. : Getting started with TEOS-10 and the Gibbs Seawater (GSW) oceanographic toolbox, SCOR/IAPSO WG, 127, 1-28, 2011.
McPhee, M. G., Maykut, G. A., and Morison, J. H. : Dynamics and thermodynamics of the ice/upper ocean system in the marginal ice zone of the Greenland Sea, J. Geophys. Res.-Oceans, 92, 7017-7031, 1987.
Middleton, C., Thomas, C., DeWit, A., and Tison, J.-L. : Visualizing brine channel development and convective processes during artificial sea-ice growth using Schlieren optical methods, J. Glaciol., 62, 1-17, 2016.
Miller, L. A., Fripiat, F., Else, B. G., Bowman, J. S., Brown, K. A., Collins, R. E., Ewert, M., Fransson, A., Gosselin, M., Lannuzel, D., Meiners, K. M., Michel, C., Nishioka, J., Nomura, D., Papadimitriou, S., Russell, L. M., Sørensen, L. L., Thomas, D. N., Tison, J.-L., Van Leeuwe, M. A., Vancoppenolle, M., Wolff, E. W., and Zhou, J. : Methods for biogeochemical studies of sea ice: The state of the art, caveats, and recommendations, Elementa, 3, 000038, https://doi. org/10. 12952/journal. elementa. 000038, 2015.
Naumann, A. K., Notz, D., Håvik, L., and Sirevaag, A. : Laboratory study of initial sea-ice growth: properties of grease ice and nilas, The Cryosphere, 6, 729-741, https://doi. org/10. 5194/tc-6-729-2012, 2012.
Niedrauer, T. M. and Martin, S. : An experimental study of brine drainage and convection in young sea ice, J. Geophys. Res.-Oceans, 84, 1176-1186, 1979.
Nomura, D., Yoshikawa-Inoue, H., and Toyota, T. : The effect of sea-ice growth on air-sea CO2 flux in a tank experiment, Tellus B, 58, 418-426, 2006.
Notz, D. : Thermodynamic and fluid-dynamical processes in sea ice, Phd thesis, University of Cambridge, 2005.
Notz, D. and Worster, M. G. : In situ measurements of the evolution of young sea ice, J. Geophys. Res.-Oceans, 113, C03001, https://doi. org/10. 1029/2007JC004333, 2008.
Notz, D. and Worster, M. G. : Desalination processes of sea ice revisited, J. Geophys. Res.-Oceans, 114, C05006, https://doi. org/10. 1029/2008JC004885, 2009.
Notz, D., Wettlaufer, J. S., and Worster, M. G. : A non-destructive method for measuring the salinity and solid fraction of growing sea ice in situ, J. Glaciol., 51, 159-166, 2005.
Perovich, D. K. and Grenfell, T. C. : Laboratory studies of the optical properties of young sea ice, J. Glaciol., 27, 331-346, 1981.
Perovich, D. K. and Richter-Menge, J. A. : Surface characteristics of lead ice, J. Geophys. Res.-Oceans, 99, 16341-16350, 1994.
Rees Jones, D. W. and Worster, M. G. : A physically based parameterization of gravity drainage for sea-ice modeling, J. Geophys. Res.-Oceans, 119, 5599-5621, https://doi. org/10. 1002/2013JC009296, 2014.
Rysgaard, S., Wang, F., Galley, R. J., Grimm, R., Notz, D., Lemes, M., Geilfus, N.-X., Chaulk, A., Hare, A. A., Crabeck, O., Else, B. G. T., Campbell, K., Sørensen, L. L., Sievers, J., and Papakyriakou, T. : Temporal dynamics of ikaite in experimental sea ice, The Cryosphere, 8, 1469-1478, https://doi. org/10. 5194/tc-8-1469-2014, 2014.
Shaw, M., Carpenter, L., Baeza-Romero, M., and Jackson, A. : Thermal evolution of diffusive transport of atmospheric halocarbons through artificial sea-ice, Atmos. Environ., 45, 6393-6402, 2011.
Stefan, J. : ?ber einige Probleme der Theorie der Warmeleitung (in German), Sitzungsberichte der Math-Natur Classe der Kaiserlichen, Akad der Weissenschaften, 98, 473-484, 1889.
Style, R. W. and Worster, M. G. : Frost flower formation on sea ice and lake ice, Geophys. Res. Lett., 36, L11501, https://doi. org/10. 1029/2009GL037304, 2009.
Taskjelle, T., Hudson, S. R., Granskog, M. A., Nicolaus, M., Lei, R., Gerland, S., Stamnes, J. J., and Hamre, B. : Spectral albedo and transmittance of thin young A rctic sea ice, J. Geophys. Res.-Oceans, 121, 540-553, 2016.
Thomas, M. : SI for final submission of: The Roland von Glasow Air-Sea-Ice Chamber (RvG-ASIC): an experimental facility for studying ocean/sea-ice/atmosphere interactions (Version Final submission), Zenodo, https://doi. org/10. 5281/zenodo. 4419170, 2021.
Thomas, M., Vancoppenolle, M., France, J., Sturges, W., Bakker, D., Kaiser, J., and von Glasow, R. : Tracer measurements in growing sea ice support convective gravity drainage parameterizations, J. Geophys. Res.-Oceans, 125, e2019JC015791, https://doi. org/10. 1029/2019JC015791, 2020.
Tison, J.-L., Haas, C., Gowing, M. M., Sleewaegen, S., and Bernard, A. : Tank study of physico-chemical controls on gas content and composition during growth of young sea ice, J. Glaciol., 48, 177-191, 2002.
Turner, A. K., Hunke, E. C., and Bitz, C. M. : Two modes of sea-ice gravity drainage: A parameterization for large-scale modeling, J. Geophys. Res.-Oceans, 118, 2279-2294, 2013.
Vancoppenolle, M., Goosse, H., De Montety, A., Fichefet, T., Tremblay, B., and Tison, J.-L. : Modeling brine and nutrient dynamics in Antarctic sea ice: The case of dissolved silica, J. Geophys. Res.-Oceans, 115, C02005, https://doi. org/10. 1029/2009JC005369, 2010.
Vancoppenolle, M., Madec, G., Thomas, M., and McDougall, T. J. : Thermodynamics of Sea Ice Phase Composition Revisited, J. Geophys. Res.-Oceans, 124, 615-634, https://doi. org/10. 1029/2018JC014611, 2019.
Wakatsuchi, M. and Ono, N. : Measurements of salinity and volume of brine excluded from growing sea ice, J. Geophys. Res.-Oceans, 88, 2943-2951, 1983.
Weast, R. C. : Handbook of Chemistry and Physics, Chemical Rubber Co., Cleveland, Ohio, USA, 1971.
Weeks, W. F. and Lee, O. S. : The salinity distribution in young sea ice, vol. 98, US Army Cold Regions Research and Engineering Laboratory, Corps of Engineers, Hanover, New Hampshire, USA, https://doi. org/10. 14430/arctic3562, 1962.
Wells, A., Wettlaufer, J., and Orszag, S. : Brine fluxes from growing sea ice, Geophys. Res. Lett., 38, L04501, https://doi. org/10. 1029/2010GL046288, 2011.
Wettlaufer, J., Worster, M. G., and Huppert, H. E. : The phase evolution of young sea ice, Geophys. Res. Lett., 24, 1251-1254, 1997.
Worster, M. G. and Rees Jones, D. W. : Sea-ice thermodynamics and brine drainage, Philos. T. Roy. Soc. A, 373, 20140166, https://doi. org/10. 1098/rsta. 2014. 0166, 2015.
Zeigermann, L. M. : Desalination processes in thin sea ice during freezing and melting, MSc thesis, University Hamburg, Hamburg, Germany, 2018.
Zhou, J., Tison, J.-L., Carnat, G., Geilfus, N.-X., and Delille, B. : Physical controls on the storage of methane in landfast sea ice, The Cryosphere, 8, 1019-1029, https://doi. org/10. 5194/tc-8-1019-2014, 2014.