[en] The Arctic is undergoing unprecedented change. Observations and models demonstrate significant perturbations to the physical and biological systems. Arctic species and ecosystems, particularly in the marine environment, are subject to a wide range of pressures from human activities, including exposure to a complex mixture of pollutants, climate change and fishing activity. These pressures affect the ecosystem services that the Arctic provides. Current international policies are attempting to support sustainable exploitation of Arctic resources with a view to balancing human wellbeing and environmental protection. However, assessments of the potential combined impacts of human activities are limited by data, particularly related to pollutants, a limited understanding of physical and biological processes, and single policies that are limited to ecosystem-level actions. This manuscript considers how, when combined, a suite of existing tools can be used to assess the impacts of pollutants in combination with other anthropogenic pressures on Arctic ecosystems, and on the services that these ecosystems provide. Recommendations are made for the advancement of targeted Arctic research to inform environmental practices and regulatory decisions.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Townhill, Bryony L ; The Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, Suffolk, NR33 0HT, UK. bryony.townhill@cefas.co.uk
Reppas-Chrysovitsinos, Efstathios; Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
Sühring, Roxana; Department of Environmental Science, Stockholm University, 106 91, Stockholm, Sweden ; Department of Chemistry and Biology, Ryerson University, Toronto, ON, M5B 2K3, Canada
Halsall, Crispin J; Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
Mengo, Elena; The Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, Suffolk, NR33 0HT, UK
Sanders, Tina; Helmholtz-Zentrum Hereon, Institute for Carbon Cycles, Max-Planck-Str. 1, 21502, Geesthacht, Germany
Dähnke, Kirsten; Helmholtz-Zentrum Hereon, Institute for Carbon Cycles, Max-Planck-Str. 1, 21502, Geesthacht, Germany
Crabeck, Odile ; Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS) ; Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
Kaiser, Jan; Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
Birchenough, Silvana N R; The Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, Suffolk, NR33 0HT, UK
Language :
English
Title :
Pollution in the Arctic Ocean: An overview of multiple pressures and implications for ecosystem services.
This work was supported by Project EISPAC (NERC Grant No. NE/R012857/1), part of the Changing Arctic Ocean Programme, jointly funded by the UKRI Natural Environment Research Council (NERC) and the German Federal Ministry of Education and Research (BMBF).
Afflerbach, J.C., D. Yocum, and B.S. Halpern. 2017. Cumulative human impacts in the Bering Strait Region. Ecosystem Health and Sustainability 3: 8. 10.1080/20964129.2017.1379888. DOI: 10.1080/20964129.2017.1379888
Ainsworth, C.H., C.B. Paris, N. Perlin, L.N. Dornberger, W.F. Patterson Ill, E. Chancellor, S. Murawski, D. Hollander, et al. 2018. Impacts of the Deepwater Horizon oil spill evaluated using an end-to-end ecosystem model. PLoS ONE 13: e0190840. DOI: 10.1371/journal.pone.0190840
AMAP. 2016. In Influence of climate change on transport, levels, and effects of contaminants in northern areas—Part 2, ed. P. Carlsson, J.H. Christensen, K. Borgå, R. Kallenborn, K. Aspmo Pfaffhuber, J.Ø. Odland, L.-O. Reiersen, and J.F. Pawlak. Oslo: Arctic Monitoring and Assessment Programme (AMAP).
AMAP. 2018. AMAP Assessment 2018: Biological effects of contaminants on Arctic wildlife and fish, vol. VII. Oslo: Arctic Monitoring and Assessment Programme (AMAP).
AMAP. 2021. AMAP and the Arctic Council. https://www.amap.no/. Accessed 27 July 2021.
Andersen, J.H., Z. Al-Hamdani, E.T. Harvey, E. Kallenbach, C. Murray, and A. Stock. 2020. Relative impacts of multiple human stressors in estuaries and coastal waters in the North Sea-Baltic Sea transition zone. Science of the Total Environment 704: 135316. 10.1016/j.scitotenv.2019.135316. DOI: 10.1016/j.scitotenv.2019.135316
Anisimov, O.A., D.G. Vaughan, T.V. Callaghan, C. Furgal, H. Marchant, T.D. Prowse, H. Vilhjálmsson, and J.E. Walsh. 2007. Polar regions (Arctic and Antarctic). Climate Change 2007: Impacts, adaptation and vulnerability. In Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, 653–685. Cambridge: Cambridge University Press.
Arctic Council. 2021. Arctic Council. https://arctic-council.org/en/. Accessed 27 July 2021.
Arnot, J.A., and D. Mackay. 2008. Policies for chemical hazard and risk priority setting: Can persistence, bioaccumulation, toxicity and quantity information be combined? Environmental Science and Technology 42: 4648–4654. 10.1021/es800106g. DOI: 10.1021/es800106g
Beecham, J.A., J. Bruggeman, J. Aldridge, and S. Mackinson. 2015. An approach for coupling higher and lower levels in marine ecosystem models and its application to the North Sea. Geoscientific Model Development Discussions 8: 5577–5618.
Bentley, J.W., N. Serpetti, and J.J. Heymans. 2017. Investigating the potential impacts of ocean warming on the Norwegian and Barents Seas ecosystem using a time-dynamic food-web model. Ecological Modelling 360: 94–107. DOI: 10.1016/j.ecolmodel.2017.07.002
Box, J.E., W.T. Colgan, T.R. Christensen, N.M. Schmidt, M. Lund, F.-J.W. Parmentier, R. Brown, U.S. Bhatt, et al. 2019. Key Indicators of Arctic climate change: 1971–2017. Environmental Research Letters 14: 4. 10.1088/1748-9326/aafc1b. DOI: 10.1088/1748-9326/aafc1b
C3S. 2020. Sea ice maps. https://climate.copernicus.eu/node/195. Accessed 1 July 2020.
Cabral, P., H. Levrel, J. Schoenn, E. Thiébaut, P. Le Mao, R. Mongruel, C. Rollet, K. Dedieu, et al. 2015. Marine habitats ecosystem service potential: A vulnerability approach in the Normand-Breton (Saint Malo) Gulf, France. Ecosystem Services 16: 306–318. DOI: 10.1016/j.ecoser.2014.09.007
CAFF. 2015. The Economics of Ecosystems and Biodiversity (TEEB) scoping study for the Arctic. Akureyri: Conservation of Arctic Flora and Fauna. ISBN 978-9935-431-46-2.
CAMS Catalogue. 2020. https://atmosphere.copernicus.eu/catalogue#/. Accessed 1 July 2020.
Carroll, J., F. Vikebø, D. Howell, O.J. Broch, R. Nepstad, S. Augustine, G.M. Skeie, R. Bast, and J. Juselius. 2018. Assessing impacts of simulated oil spills on the northeast Arctic cod fishery. Marine Pollution Bulletin 126: 63–73. DOI: 10.1016/j.marpolbul.2017.10.069
Chagaris, D.D., W.F. Patterson, and M.S. Allen. 2020. Relative effects of multiple stressors on reef food webs in the northern Gulf of Mexico revealed via ecosystem modeling. Frontiers in Marine Science 7: 513. 10.3389/fmars.2020.00513. DOI: 10.3389/fmars.2020.00513
Cheung, W.W.L., V.W.Y. Lam, J.L. Sarmiento, K. Kearney, R. Watson, D. Zeller, and D. Pauly. 2010. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Global Change Biology 16: 24–35. 10.1111/j.1365-2486.2009.01995.x. DOI: 10.1111/j.1365-2486.2009.01995.x
Christensen, V., and D. Pauly. 1992. Ecopath II—A software for balancing steady-state ecosystems models and calculating network characteristics. Ecological Modelling 61: 169–185. DOI: 10.1016/0304-3800(92)90016-8
Christensen, V., and C.J. Walters. 2004. Ecopath with Ecosim: Methods, capabilities and limitations. Ecological Modelling 172: 109–139. DOI: 10.1016/j.ecolmodel.2003.09.003
Christensen, V., and C.J. Walters. 2005. Ecopath with Ecosim: A user’s guide, November 2005 edition. Vancouver: Fisheries Centre, University of British Columbia.
Christie, H., T. Bekkby, K.M. Norderhaug, J. Beyer, and N.M. Jørgensen. 2019. Can sea urchin grazing of kelp forests in the Arctic make rocky shore systems more vulnerable to oil spills? Polar Biology 42: 557–567. DOI: 10.1007/s00300-018-02450-8
CMEMS. 2016. https://www.copernicus.eu/sites/default/files/documents/Copernicus_MarineMonitoring_Feb2017.pdf. Accessed 1 July 2020.
Copernicus Land Monitoring Service. 2021. Copernicus Land Monitoring Service. https://land.copernicus.eu/. Accessed 27 July 2021.
Corrales, X., M. Coll, E. Ofir, C. Piroddi, M. Goren, D. Edelist, J.J. Heymans, J. Steenbeek, et al. 2017. Hindcasting the dynamics of an Eastern Mediterranean marine ecosystem under the impacts of multiple stressors. Marine Ecology Progress Series 580: 17–36. 10.3354/meps12271. DOI: 10.3354/meps12271
Culhane, F., H. Teixeira, A.J. Nogueira, F. Borgwardt, D. Trauner, A. Lillebø, G. Piet, M. Kuemmerlen, H. McDonald, T. O’Higgins, and A.L. Barbosa. 2019. Risk to the supply of ecosystem services across aquatic ecosystems. Science of the Total Environment 660: 611–621. DOI: 10.1016/j.scitotenv.2018.12.346
Díaz, S., S. Demissew, J. Carabias, C. Joly, M. Lonsdale, N. Ash, A. Larigauderie, J.R. Adhikari, S. Arico, A. Báldi, and A. Bartuska. 2015. The IPBES Conceptual Framework—Connecting nature and people. Current Opinion in Environmental Sustainability 14: 1–16. DOI: 10.1016/j.cosust.2014.11.002
ECHA. 2018. Report from Workshop on EUSES update needs, Reference: ECHA-18-R-13-EN, Brussels, 4–5 June 2018. https://doi.org/10.2823/679687.
Firoozy, N., T. Neusitzer, D. Chirkova, D.S. Desmond, M.J. Lemes, J. Landy, P. Mojabi, S. Rysgaard, G. Stern, and D.G. Barber. 2018. A controlled experiment on oil release beneath thin sea ice and its electromagnetic detection. IEEE Transactions on Geoscience and Remote Sensing 56: 4406–4419. DOI: 10.1109/TGRS.2018.2818717
Fisher, B., R.K. Turner, and P. Morling. 2009. Defining and classifying ecosystem services for decision making. Ecological Economics 68: 643–653. DOI: 10.1016/j.ecolecon.2008.09.014
Fulton, E.A. 2010. Approaches to end-to-end ecosystem models. Journal of Marine Systems 81: 171–183. DOI: 10.1016/j.jmarsys.2009.12.012
Garnett, J., C. Halsall, M. Thomas, J. France, J. Kaiser, C. Graf, A. Leeson, and P. Wynn. 2019. Mechanistic insight into the uptake and fate of persistent organic pollutants in sea ice. Environmental Science and Technology 53: 6757–6764. 10.1021/acs.est.9b00967. DOI: 10.1021/acs.est.9b00967
Garnett, J., C. Halsall, M. Thomas, O. Crabeck, J. France, H. Joerss, R. Ebinghaus, J. Kaiser, A. Leeson, and P.M. Wynn. 2021a. Investigating the uptake and fate of poly- and perfluoroalkylated substances (PFAS) in sea ice using an experimental sea ice chamber. Environmental Science and Technology 55: 9601–9608. DOI: 10.1021/acs.est.1c01645
Garnett, J., C. Halsall, A. Vader, H. Joerss, R. Ebinghaus, A. Leeson, and P. Wynn. 2021b. High concentrations of perfluoroalkyl acids in Arctic seawater driven by early thawing sea ice. Environmental Science and Technology 55: 11049–11059. DOI: 10.1021/acs.est.1c01676
Geilfus, N.X., K.M. Munson, J. Sousa, Y. Germanov, S. Bhugaloo, D. Babb, and F. Wang. 2019. Distribution and impacts of microplastic incorporation within sea ice. Marine Pollution Bulletin 145: 463–473. DOI: 10.1016/j.marpolbul.2019.06.029
Halpern, B.S., S. Walbridge, K.A. Selkoe, C.V. Kappel, F. Micheli, C. D’Agrosa, J.F. Bruno, J.S. Casey, et al. 2008. A global map of human impact on marine ecosystems. Science 319: 948–952. 10.1126/science.1149345. DOI: 10.1126/science.1149345
Halsband, C., and D. Herzke. 2019. Plastic litter in the European Arctic: What do we know? Emerging Contaminants 5: 308–318. 10.1016/j.emcon.2019.11.001. DOI: 10.1016/j.emcon.2019.11.001
Hansen, C., M. Skern-Mauritzen, G.I. van der Meeren, A. Jähkel, and K. Drinkwater. 2016. Set-up of the Nordic and Barents Seas (NoBa) Atlantis model. Technical Report,·February 2016. Report 2/2016. Institute of Marine Research, Norway. https://doi.org/10.13140/RG.2.1.3339.9929.
Hansen, C., K.F. Drinkwater, A. Jähkel, E.A. Fulton, R. Gorton, and M. Skern-Mauritzen. 2019a. Sensitivity of the Norwegian and Barents Sea Atlantis end-to-end ecosystem model to parameter perturbations of key species. PLoS ONE 14: e0210419. DOI: 10.1371/journal.pone.0210419
Hansen, C., R.D.M. Nash, K.F. Drinkwater, and S.S. Hjøllo. 2019b. Management scenarios under climate change—A study of the Nordic and Barents Seas. Frontiers in Marine Science 6: 668. DOI: 10.3389/fmars.2019.00668
Hasselström, L., S. Cole, C. Håkansson, Y. Khaleeva, M. Noring, and Å. Soutukorva. 2012. The value of ecosystem services at risk from oil spills in the Barents Sea. In The ISEE conference, Rio de Janeiro, 16–19 June.
Hooper, T., N. Beaumont, C. Griffiths, O. Langmead, and P.J. Somerfield. 2017. Assessing the sensitivity of ecosystem services to changing pressures. Ecosystem Services 24: 160–169. DOI: 10.1016/j.ecoser.2017.02.016
Huntington, H.P., R. Daniel, A. Hartsig, K. Harun, M. Heiman, R. Meehan, G. Noongwook, L. Pearson, M. Prior-Parks, M. Robards, and G. Stetson. 2015. Vessels, risks, and rules: Planning for safe shipping in Bering Strait. Marine Policy 51: 119–127. DOI: 10.1016/j.marpol.2014.07.027
Huntington, H.P., S.L. Danielson, F.K. Wiese, M. Baker, P. Boveng, J.J. Citta, A. De Robertis, D.M.S. Dickson, et al. 2020. Evidence suggests potential transformation of the Pacific Arctic ecosystem is underway. Nature Climate Change 10: 342–348. 10.1038/s41558-020-0695-2. DOI: 10.1038/s41558-020-0695-2
ICES. 2017. Report of the Working Group on the Integrated Assessments of the Barents Sea (WGIBAR), ICES CM 2017/SSGIEA:04, 16–18 March 2017, Murmansk, Russia.
ICES. 2018a. Report of the workshop on an ecosystem-based approach to fishery management for the Irish Sea (WKIrish5), ICES CM 2018/ACOM:66, 5–9 November 2018, Dublin, Ireland.
ICES. 2018b. Report of the workshop on operational EwE models to inform IEAs (WKEW-IEA), ICES CM 2018/IEASG:16, 26–30 November 2018, Barcelona, Spain.
Ivarsson, M., K. Magnussen, A.S. Heiskanen, S. Navrud, and M. Viitasalo. 2017. Ecosystem services in MSP: Ecosystem services approach as a common Nordic understanding for MSP. Nordic Council of Ministers. TemaNord 2017: 536.
Johansen, G.O., E. Johannesen, K. Michalsen, A. Aglen, and Å. Fotland. 2013. Seasonal variation in geographic distribution of North East Arctic (NEA) cod—Survey coverage in a warmer Barents Sea. Marine Biology Research 9: 908–919. 10.1080/17451000.2013.775456. DOI: 10.1080/17451000.2013.775456
Jouffray, J.-B., R. Blasiak, A.V. Norström, H. Österblom, and M. Nyström. 2019. The Blue acceleration: The trajectory of human expansion into the ocean. One Earth 2: 43–54. 10.1016/j.oneear.2019.12.016. DOI: 10.1016/j.oneear.2019.12.016
Kaltenborn, B.P. 1998. Effects of sense of place on responses to environmental impacts: A study among residents in Svalbard in the Norwegian high Arctic. Applied Geography 18: 169–189. DOI: 10.1016/S0143-6228(98)00002-2
Macdonald, R.W., T. Harner, and J. Fyfe. 2017. Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data. Science of the Total Environment 342: 5–86. DOI: 10.1016/j.scitotenv.2004.12.059
MacLeod, M., H. von Waldow, P. Tay, J.M. Armitage, H. Wöhrnschimmel, W.J. Riley, T.E. McKone, and K. Hungerbuhler. 2011. BETR global—A geographically-explicit global-scale multimedia contaminant fate model. Environmental Pollution 159: 1442–1445. 10.1016/j.envpol.2011.01.038. DOI: 10.1016/j.envpol.2011.01.038
Melia, N., K. Haines, and E. Hawkins. 2017. Future of the sea: Implications from opening Arctic shipping routes. Foresight—Future of the Sea Evidence Review. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/634437/Future_of_the_sea_-_implications_from_opening_arctic_sea_routes_final.pdf. Accessed 28 Sep 2020.
Meredith, M., M. Sommerkorn, S. Cassotta, C. Derksen, A. Ekaykin, A. Hollowed, G. Kofinas, A. Mackintosh, et al. 2019. Polar regions. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, ed. H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, and N.M. Weyer.
Millennium Ecosystem Assessment. 2005. Ecosystems and human well-being: Synthesis. Washington, DC: Island Press.
NERC. 2021. Effects of ice stressors and pollutants on the Arctic marine cryosphere (EISPAC). https://www.changing-arctic-ocean.ac.uk/project/eispac/. Accessed 10 March 2021.
Neumann, B., A. Mikoleit, J.S. Bowman, H.W. Ducklow, and F. Müller. 2019. Ecosystem service supply in the Antarctic Peninsula region: Evaluating an expert-based assessment approach and a novel seascape data model. Frontiers in Environmental Science 7: 157. DOI: 10.3389/fenvs.2019.00157
Nilsen, E., K.L. Smalling, L. Ahrens, L. Ahrens, M. Gros, K.S.B. Miglioranza, Y. Picó, and H.L. Schoenfuss. 2019. Critical review: Grand challenges in assessing the adverse effects of contaminants of emerging concern on aquatic food webs. Environmental Toxicology and Chemistry 38: 46–60. 10.1002/etc.4290. DOI: 10.1002/etc.4290
Overland, J., E. Dunlea, J.E. Box, R. Corell, M. Forsius, V. Kattsov, M.S. Olsen, J. Pawlak, et al. 2019. The urgency of Arctic change. Polar Science 21: 6–13. 10.1016/j.polar.2018.11.008. DOI: 10.1016/j.polar.2018.11.008
Pascual, U., P. Balvanera, S. Díaz, G. Pataki, E. Roth, M. Stenseke, R.T. Watson, E.B. Dessane, M. Islar, E. Kelemen, and V. Maris. 2017. Valuing nature’s contributions to people: The IPBES approach. Current Opinion in Environmental Sustainability 26: 7–16. DOI: 10.1016/j.cosust.2016.12.006
Platjouw, F.M. 2019. Dimensions of transboundary legal coherence needed to foster ecosystem-based governance in the Arctic. Marine Policy 110: 103666. 10.1016/j.marpol.2019.103666. DOI: 10.1016/j.marpol.2019.103666
Polovina, J.J. 1984. Model of a coral reef ecosystem. I. The ECOPATH model and its application to the French frigate shoals. Coral Reefs 3: 1–11. DOI: 10.1007/BF00306135
Reppas Chrysovitsinos, E. 2017. In silico methods to prioritize chemicals with high exposure potential. PhD Dissertation, Department of Environmental Science and Analytical Chemistry, Stockholm University. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-149358. Accessed 10 March 2021.
Rogers, A.D., and D. Laffoley. 2013. Introduction to the special issue: The global state of the ocean; interactions between stresses, impacts and some potential solutions. Synthesis papers from the International Programme on the State of the Ocean 2011 and 2012 workshops. Marine Pollution Bulletin 74: 491–494. https://doi.org/10.1016/j.marpolbul.2013.06.057 (Epub 7 Aug 2013).
Serpetti, N., A.R. Baudron, M.T. Burrows, B.L. Payne, P. Helaouët, P.G. Fernandes, and J.J. Heymans. 2017. Impact of ocean warming on sustainable fisheries management informs the Ecosystem Approach to Fisheries. Scientific Reports 7: 13438. DOI: 10.1038/s41598-017-13220-7
Shannon, L.J., J.G. Field, and C.L. Moloney. 2004. Simulating anchovy-sardine regime shifts in the southern Benguela ecosystem. Ecological Modelling 172: 269–281. DOI: 10.1016/j.ecolmodel.2003.09.011
Søreide, J.E., E. Leu, J. Berge, M. Graeve, and S. Falk-Petersen. 2010. Timing of blooms, algal food quality and Calanus glacialis reproduction and growth in a changing Arctic. Global Change Biology 16: 3154–3163. 10.1111/j.1365-2486.2010.02175.x. DOI: 10.1111/j.1365-2486.2010.02175.x
Sturludottir, E., C. Desjardins, B. Elvarsson, E.A. Fulton, R. Gorton, K. Logemann, and G. Stefansson. 2018. End-to-end model of Icelandic waters using the Atlantis framework: Exploring system dynamics and model reliability. Fisheries Research 207: 9–24. 10.1016/j.fishres.2018.05.026. DOI: 10.1016/j.fishres.2018.05.026
Tai, T.C., N.S. Steiner, C. Hoover, W.W.L. Cheung, and U.R. Sumaila. 2019. Evaluating present and future potential of Arctic fisheries in Canada. Marine Policy. 10.1016/j.marpol.2019.103637. DOI: 10.1016/j.marpol.2019.103637
Tank, S.E., M. Manizza, R.M. Holmes, J.W. McClelland, and B.J. Peterson. 2012. The processing and impact of dissolved riverine nitrogen in the Arctic Ocean. Estuaries and Coasts 35: 401–415. DOI: 10.1007/s12237-011-9417-3
TEEB. 2010. The economics of ecosystems and biodiversity ecological and economic foundations, ed. P. Kumar. London: Earthscan.
Thomas, M., M. Vancoppenolle, J.L. France, W.T. Sturges, D.C.E. Bakker, J. Kaiser, and R. von Glasow. 2020. Tracer measurements in growing sea ice support convective gravity drainage parameterisations. Journal of Geophysical Research Oceans 125: e2019JC015791. 10.1029/2019jc015791. DOI: 10.1029/2019jc015791
Thomas, M., J. France, O. Crabeck, B. Hall, V. Hof, D. Notz, T. Rampai, L. Riemenschneider, O.J. Tooth, M. Tranter, and J. Kaiser. 2021. The Roland von Glasow Air-Sea-Ice Chamber (RvG-ASIC): An experimental facility for studying ocean–sea-ice–atmosphere interactions. Atmospheric Measurement Techniques 14: 1833–1849. 10.5194/amt-14-1833-2021. DOI: 10.5194/amt-14-1833-2021
Turner, R.K., J. Paavola, P. Cooper, S. Farber, V. Jessamy, and S. Georgiou. 2003. Valuing nature: Lessons learned and future research directions. Ecological Economics 46: 493–510. DOI: 10.1016/S0921-8009(03)00189-7
UK National Ecosystem Assessment. 2014. The UK National Ecosystem Assessment: Synthesis of the key findings. UNEP-WCMC, LWEC, UK.
Vallecillo, S., A. La Notte, S. Ferrini, and J. Maes. 2019. How ecosystem services are changing: An accounting application at the EU level. Ecosystem Services 40: 101044. DOI: 10.1016/j.ecoser.2019.101044
Van den Brink, P.J., A.B. Boxall, L. Maltby, B.W. Brooks, M.A. Rudd, T. Backhaus, D. Spurgeon, V. Verougstraete, et al. 2018. Toward sustainable environmental quality: Priority research questions for Europe. Environmental Toxicology and Chemistry 37: 2281–2295. 10.1002/etc.4205. DOI: 10.1002/etc.4205
van Leeuwen, C.V. 2007. General introduction. In Risk Assessment of chemicals, ed. C. van Leeuwen and T. Vermeire. Dordrecht: Springer. 10.1007/978-1-4020-6102-8. DOI: 10.1007/978-1-4020-6102-8
VanWormer, E., J.A.K. Mazet, A. Hall, V.A. Gill, P.L. Boveng, J.M. London, T. Gelatt, B.S. Fadely, et al. 2019. Viral emergence in marine mammals in the North Pacific may be linked to Arctic sea ice reduction. Scientific Reports 9: 15569. 10.1038/s41598-019-51699-4. DOI: 10.1038/s41598-019-51699-4
Villa, S., S. Migliorati, G.S. Monti, I. Holoubek, and M. Vighi. 2017. Risk of POP mixtures on the Arctic food chain. Environmental Toxicology and Chemistry 36: 1181–1192. 10.1002/etc.3671. DOI: 10.1002/etc.3671
von Friesen, L.W., M.E. Granberg, O. Pavlova, K. Magnusson, M. Hassellöv, and G.W. Gabrielsen. 2020. Summer sea ice melt and wastewater are important local sources of microlitter to Svalbard waters. Environment International 139: 05511. 10.1016/j.envint.2020.105511. DOI: 10.1016/j.envint.2020.105511
Walters, W.J., and V. Christensen. 2018. Ecotracer: Analyzing concentration of contaminants and radioisotopes in an aquatic spatial-dynamic food web model. Journal of Environmental Radioactivity 181: 118–127. 10.1016/j.jenvrad.2017.11.008. DOI: 10.1016/j.jenvrad.2017.11.008
Wassmann, P. 2011. Arctic marine ecosystems in an era of rapid change. Progress in Oceanography 90: 1–7. 10.1016/j.pocean.2011.02.002. DOI: 10.1016/j.pocean.2011.02.002
Wassmann, P., and M. Reigstad. 2011. Future Arctic Ocean seasonal ice zones and implications for pelagic–benthic coupling. Oceanography 24: 220–231. 10.5670/oceanog.2011.74. DOI: 10.5670/oceanog.2011.74
Wassmann, P., C.M. Duarte, S. Agustí, and M.K. Sejr. 2011. Footprints of climate change in the Arctic marine ecosystem. Global Change Biology 17: 1235–1249. 10.1111/j.1365-2486.2010.02311.x. DOI: 10.1111/j.1365-2486.2010.02311.x
Wegmann, F., L. Cavin, M. MacLeod, M. Scheringer, and K. Hungerbühler. 2009. The OECD software tool for screening chemicals for persistence and long-range transport potential. Environmental Modelling and Software 24: 228–237. 10.1016/j.envsoft.2008.06.014. DOI: 10.1016/j.envsoft.2008.06.014
Weinke, C., and C.D. Amsler. 2012. Seaweeds and their communities in polar regions. In Seaweed biology, 265–291. Berlin: Springer.
Wöhrnschimmel, H., M. MacLeod, and K. Hungerbühler. 2013. Emissions, fate and transport of persistent organic pollutants to the Arctic in a changing global climate. Environmental Science and Technology 47: 2323–2330. DOI: 10.1021/es304646n