[en] Seven rocky planets orbit the nearby dwarf star TRAPPIST-1, providing a unique opportunity to search for atmospheres on small planets outside the Solar System1. Thanks to the recent launch of the James Webb Space Telescope (JWST), possible atmospheric constituents such as carbon dioxide (CO2) are now detectable2,3. Recent JWST observations of the innermost planet TRAPPIST-1 b showed that it is most probably a bare rock without any CO2 in its atmosphere4. Here we report the detection of thermal emission from the dayside of TRAPPIST-1 c with the Mid-Infrared Instrument (MIRI) on JWST at 15 µm. We measure a planet-to-star flux ratio of fp/f⁎ = 421 ± 94 parts per million (ppm), which corresponds to an inferred dayside brightness temperature of 380 ± 31 K. This high dayside temperature disfavours a thick, CO2-rich atmosphere on the planet. The data rule out cloud-free O2/CO2 mixtures with surface pressures ranging from 10 bar (with 10 ppm CO2) to 0.1 bar (pure CO2). A Venus-analogue atmosphere with sulfuric acid clouds is also disfavoured at 2.6σ confidence. Thinner atmospheres or bare-rock surfaces are consistent with our measured planet-to-star flux ratio. The absence of a thick, CO2-rich atmosphere on TRAPPIST-1 c suggests a relatively volatile-poor formation history, with less than [Formula: see text] Earth oceans of water. If all planets in the system formed in the same way, this would indicate a limited reservoir of volatiles for the potentially habitable planets in the system.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Zieba, Sebastian ; Max-Planck-Institut für Astronomie, Heidelberg, Germany. zieba@mpia.de ; Leiden Observatory, Leiden University, Leiden, The Netherlands. zieba@mpia.de
Kreidberg, Laura ; Max-Planck-Institut für Astronomie, Heidelberg, Germany
Ducrot, Elsa ; Université Paris-Saclay, Université Paris Cité, CEA, CNRS, AIM, Gif-sur-Yvette, France
Gillon, Michaël ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO)
Morley, Caroline; Department of Astronomy, University of Texas at Austin, Austin, TX, USA
Schaefer, Laura ; Department of Earth and Planetary Sciences, Stanford University, Stanford, CA, USA
Tamburo, Patrick; Department of Astronomy, Boston University, Boston, MA, USA ; The Institute for Astrophysical Research, Boston University, Boston, MA, USA
Koll, Daniel D B; Department of Atmospheric and Oceanic Sciences, Peking University, Beijing, People's Republic of China
Lyu, Xintong; Department of Atmospheric and Oceanic Sciences, Peking University, Beijing, People's Republic of China
Acuña, Lorena; Max-Planck-Institut für Astronomie, Heidelberg, Germany ; Aix-Marseille Université, CNRS, CNES, Institut Origines, LAM, Marseille, France
Agol, Eric ; Astrobiology Program, Department of Astronomy, University of Washington, Seattle, WA, USA ; NASA Nexus for Exoplanet System Science, Virtual Planetary Laboratory Team, University of Washington, Seattle, WA, USA
Iyer, Aishwarya R; School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
Hu, Renyu ; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA ; Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
Lincowski, Andrew P; Astrobiology Program, Department of Astronomy, University of Washington, Seattle, WA, USA ; NASA Nexus for Exoplanet System Science, Virtual Planetary Laboratory Team, University of Washington, Seattle, WA, USA
Meadows, Victoria S; Astrobiology Program, Department of Astronomy, University of Washington, Seattle, WA, USA ; NASA Nexus for Exoplanet System Science, Virtual Planetary Laboratory Team, University of Washington, Seattle, WA, USA
Selsis, Franck ; Laboratoire d'Astrophysique de Bordeaux, Université de Bordeaux, CNRS, B18N, Pessac, France
Bolmont, Emeline ; Observatoire Astronomique de l'Université de Genève, Versoix, Switzerland ; Centre Vie dans l'Univers, Université de Genève, Geneva, Switzerland
Mandell, Avi M; NASA Goddard Space Flight Center, Greenbelt, MD, USA ; Sellers Exoplanet Environments Collaboration, NASA Goddard Space Flight Center, Greenbelt, MD, USA
Suissa, Gabrielle ; Astrobiology Program, Department of Astronomy, University of Washington, Seattle, WA, USA ; NASA Nexus for Exoplanet System Science, Virtual Planetary Laboratory Team, University of Washington, Seattle, WA, USA
This work is based in part on observations made with the NASA/ESA/CSA James Webb Space Telescope. The data were obtained from the Mikulski Archive for Space Telescopes at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-03127 for JWST. These observations are associated with programme 2304. M.G. is F.R.S.-FNRS Research Director and acknowledges support from the Belgian Federal Science Policy Office (BELSPO) BRAIN 2.0 (Belgian Research Action through Interdisciplinary Networks) for the project PORTAL no. B2/212/P1/PORTAL (PhOtotrophy on Rocky habiTAble pLanets). V.S.M. and A.P.L. are part of the Virtual Planetary Laboratory Team, which is a member of the NASA Nexus for Exoplanet System Science, and financed through NASA Astrobiology Program grant 80NSSC18K0829. A.R.I. acknowledges support from the NASA FINESST grant 80NSSC21K1846.This work is based in part on observations made with the NASA/ESA/CSA James Webb Space Telescope. The data were obtained from the Mikulski Archive for Space Telescopes at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-03127 for JWST. These observations are associated with programme 2304. M.G. is F.R.S.-FNRS Research Director and acknowledges support from the Belgian Federal Science Policy Office (BELSPO) BRAIN 2.0 (Belgian Research Action through Interdisciplinary Networks) for the project PORTAL no. B2/212/P1/PORTAL (PhOtotrophy on Rocky habiTAble pLanets). V.S.M. and A.P.L. are part of the Virtual Planetary Laboratory Team, which is a member of the NASA Nexus for Exoplanet System Science, and financed through NASA Astrobiology Program grant 80NSSC18K0829. A.R.I. acknowledges support from the NASA FINESST grant 80NSSC21K1846.
Gillon, M. et al. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542, 456–460 (2017). DOI: 10.1038/nature21360
Morley, C. V., Kreidberg, L., Rustamkulov, Z., Robinson, T. & Fortney, J. J. Observing the atmospheres of known temperate Earth-sized planets with JWST. Astrophys. J. 850, 121 (2017). DOI: 10.3847/1538-4357/aa927b
Lincowski, A. P. et al. Evolved climates and observational discriminants for the TRAPPIST-1 planetary system. Astrophys. J. 867, 76 (2018). DOI: 10.3847/1538-4357/aae36a
Greene, T. P. et al. Thermal emission from the Earth-sized exoplanet TRAPPIST-1 b using JWST. Nature 618, 39–42 (2023). DOI: 10.1038/s41586-023-05951-7
Wordsworth, R. & Kreidberg, L. Atmospheres of rocky exoplanets. Annu. Rev. Astron. Astrophys. 60, 159–201 (2022). DOI: 10.1146/annurev-astro-052920-125632
Luger, R. & Barnes, R. Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs. Astrobiology 15, 119–143 (2015). DOI: 10.1089/ast.2014.1231
Kreidberg, L. et al. Absence of a thick atmosphere on the terrestrial exoplanet LHS 3844b. Nature 573, 87–90 (2019). DOI: 10.1038/s41586-019-1497-4
Crossfield, I. J. M. et al. GJ 1252b: a hot terrestrial super-Earth with no atmosphere. Astrophys. J. Lett. 937, L17 (2022). DOI: 10.3847/2041-8213/ac886b
Bell, T. J. et al. Eureka!: an end-to-end pipeline for JWST time-series observations. J. Open Source Softw. 7, 4503 (2022). DOI: 10.21105/joss.04503
Bell, T. J. et al. A first look at the JWST MIRI/LRS phase curve of WASP-43b. Preprint at https://arxiv.org/abs/2301.06350 (2023).
Moroz, V. I. et al. Solar and thermal radiation in the Venus atmosphere. Adv. Space Res. 5, 197–232 (1985). DOI: 10.1016/0273-1177(85)90202-9
Mallama, A., Wang, D. & Howard, R. A. Photometry of Mercury from SOHO/LASCO and Earth: the phase function from 2 to 170°. Icarus 155, 253–264 (2002). DOI: 10.1006/icar.2001.6723
Cowan, N. B. & Agol, E. The statistics of albedo and heat recirculation on hot exoplanets. Astrophys. J. 729, 54 (2011). DOI: 10.1088/0004-637X/729/1/54
Koll, D. D. B. et al. Identifying candidate atmospheres on rocky M dwarf planets via eclipse photometry. Astrophys. J. 886, 140 (2019). DOI: 10.3847/1538-4357/ab4c91
Schaefer, L., Wordswort, R. D., Berta-Thompson, Z. & Sasselov, D. Predictions of the atmospheric composition of GJ 1132b. Astrophys. J. 829, 63 (2016). DOI: 10.3847/0004-637X/829/2/63
Bolmont, E. et al. Water loss from terrestrial planets orbiting ultracool dwarfs: implications for the planets of TRAPPIST-1. Mon. Not. R. Astron. Soc. 464, 3728–3741 (2017). DOI: 10.1093/mnras/stw2578
Dorn, C., Noack, L. & Rozel, A. B. Outgassing on stagnant-lid super-Earths. Astron. Astrophys. 614, A18 (2018). DOI: 10.1051/0004-6361/201731513
Kane, S. R., Roettenbacher, R. M., Unterborn, C. T., Foley, B. J. & Hill, M. L. A volatile-poor formation of LHS 3844b based on its lack of significant atmosphere. Planet. Sci. J. 1, 36 (2020). DOI: 10.3847/PSJ/abaab5
Malik, M. et al. Analyzing atmospheric temperature profiles and spectra of M dwarf rocky planets. Astrophys. J. 886, 142 (2019). DOI: 10.3847/1538-4357/ab4a05
Acuña, L. et al. Characterisation of the hydrospheres of TRAPPIST-1 planets. Astron. Astrophys. 647, A53 (2021). DOI: 10.1051/0004-6361/202039885
Delrez, L. et al. Early 2017 observations of TRAPPIST-1 with Spitzer. Mon. Not. R. Astron. Soc. 475, 3577–3597 (2018). DOI: 10.1093/mnras/sty051
Hu, R., Ehlmann, B. L. & Seager, S. Theoretical spectra of terrestrial exoplanet surfaces. Astrophys. J. 752, 7 (2012). DOI: 10.1088/0004-637X/752/1/7
Hapke, B. Space weathering from Mercury to the asteroid belt. J. Geophys. Res. Planets 106, 10039–10073 (2001). DOI: 10.1029/2000JE001338
Chadney, J. M., Galand, M., Unru, Y. C., Koskinen, T. T. & Sanz-Forcada, J. XUV-driven mass loss from extrasolar giant planets orbiting active stars. Icarus 250, 357–367 (2015). DOI: 10.1016/j.icarus.2014.12.012
Fleming, D. P., Barnes, R., Luger, R. & VanderPlas, J. T. On the XUV luminosity evolution of TRAPPIST-1. Astrophys. J. 891, 155 (2020). DOI: 10.3847/1538-4357/ab77ad
Kreidberg, L. et al. Hot Take on a Cool World: Does Trappist-1c Have an Atmosphere? JWST Proposal 2304 (2021).
JWST Transiting Exoplanet Community Early Release Science Team. Identification of carbon dioxide in an exoplanet atmosphere. Nature 614, 649–652 (2023). DOI: 10.1038/s41586-022-05269-w
Ahrer, E.-M. et al. Early Release Science of the exoplanet WASP-39b with JWST NIRCam. Nature 614, 653–658 (2023). DOI: 10.1038/s41586-022-05590-4
Alderson, L. Early Release Science of the exoplanet WASP-39b with JWST NIRSpec G395H. Nature 614, 664–669 (2023). DOI: 10.1038/s41586-022-05591-3
Rustamkulov, Z. Early Release Science of the exoplanet WASP-39b with JWST NIRSpec PRISM. Nature 614, 659–663 (2023). DOI: 10.1038/s41586-022-05677-y
Lustig-Yaeger, J. et al. A JWST transmission spectrum of a nearby Earth-sized exoplanet. Preprint at https://arxiv.org/abs/2301.04191 (2023).
Bushouse, H. et al. JWST calibration pipeline. Zenodo 10.5281/zenodo.7325378 (2022).
Stetson, P. B. DAOPHOT: a computer program for crowded-field stellar photometry. Publ. Astron. Soc. Pac 99, 191 (1987). DOI: 10.1086/131977
Deming, D. et al. Spitzer secondary eclipses of the dense, modestly-irradiated, giant exoplanet HAT-P-20b using pixel-level decorrelation. Astrophys. J. 805, 132 (2015). DOI: 10.1088/0004-637X/805/2/132
Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013). DOI: 10.1086/670067
Kreidberg, L. batman: BAsic Transit Model cAlculatioN in Python. Publ. Astron. Soc. Pac. 127, 1161 (2015). DOI: 10.1086/683602
Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978). DOI: 10.1214/aos/1176344136
Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995). DOI: 10.1080/01621459.1995.10476572
Liddle, A. R. Information criteria for astrophysical model selection. Mon. Not. R. Astron. Soc. 377, L74–L78 (2007). DOI: 10.1111/j.1745-3933.2007.00306.x
Agol, E. et al. Refining the transit-timing and photometric analysis of TRAPPIST-1: masses, radii, densities, dynamics, and ephemerides. Planet. Sci. J. 2, 1 (2021). DOI: 10.3847/PSJ/abd022
Gillon, M. et al. The Spitzer search for the transits of HARPS low-mass planets. I. No transit for the super-Earth HD 40307b. Astron. Astrophys. 518, A25 (2010). DOI: 10.1051/0004-6361/201014144
Gillon, M. et al. The TRAPPIST survey of southern transiting planets. I. Thirty eclipses of the ultra-short period planet WASP-43 b. Astron. Astrophys. 542, A4 (2012). DOI: 10.1051/0004-6361/201218817
Gillon, M. et al. Search for a habitable terrestrial planet transiting the nearby red dwarf GJ 1214. Astron. Astrophys. 563, A21 (2014). DOI: 10.1051/0004-6361/201322362
Mandel, K. & Agol, E. Analytic light curves for planetary transit searches. Astrophys. J. Lett. 580, L171–L175 (2002). DOI: 10.1086/345520
Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992). DOI: 10.1214/ss/1177011136
Ducrot, E. et al. TRAPPIST-1: global results of the Spitzer Exploration Science Program Red Worlds. Astron. Astrophys. 640, A112 (2020). DOI: 10.1051/0004-6361/201937392
Ingalls, J. G. et al. Intra-pixel gain variations and high-precision photometry with the Infrared Array Camera (IRAC). Proc. SPIE 8442, 693–705 (2012).
Hapke, B. Bidirectional reflectance spectroscopy: 5. The coherent backscatter opposition effect and anisotropic scattering. Icarus 157, 523–534 (2002). DOI: 10.1006/icar.2002.6853
Mansfield, M. et al. Identifying atmospheres on rocky exoplanets through inferred high albedo. Astrophys. J. 886, 141 (2019). DOI: 10.3847/1538-4357/ab4c90
Hapke, B. Interpretations of optical observations of Mercury and the Moon. Phys. Earth Planet. Inter. 15, 264–274 (1977). DOI: 10.1016/0031-9201(77)90035-8
Keller, L. P. & Berger, E. L. in Asteroids, Comets, Meteors (ACM) 2017 Meeting 20170000492 (ACM, 2017).
Johnstone, C. P., Güdel, M., Brott, I. & Lüftinger, T. Stellar winds on the main-sequence. II. The evolution of rotation and winds. Astron. Astrophys. 577, A28 (2015). DOI: 10.1051/0004-6361/201425301
Hapke, B. Theory of Reflectance and Emittance Spectroscopy (Cambridge Univ. Press, 2012).
Polyanskiy, M. N. Refractive index database. https://refractiveindex.info.
Wordsworth, R. Atmospheric heat redistribution and collapse on tidally locked rocky planets. Astrophys. J. 806, 180 (2015). DOI: 10.1088/0004-637X/806/2/180
Stamnes, K., Tsay, S.-C., Wiscombe, W. & Jayaweera, K. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt. 27, 2502 (1988). DOI: 10.1364/AO.27.002502
Stamnes, K., Tsay, S.-C., Wiscombe, W. & Laszlo, I. DISORT, a General-Purpose Fortran Program for Discrete-Ordinate-Method Radiative Transfer in Scattering and Emitting Layered Media: Documentation of Methodology (NASA, 2000).
Robinson, T. D. & Crisp, D. Linearized Flux Evolution (LiFE): a technique for rapidly adapting fluxes from full-physics radiative transfer models. J. Quant. Spectrosc. Radiat. Transf. 211, 78–95 (2018). DOI: 10.1016/j.jqsrt.2018.03.002
Lincowski, A. P. The Nature and Characterization of M Dwarf Terrestrial Planetary Atmospheres: A Theoretical Case Study of the TRAPPIST-1 Planetary System PhD thesis, Univ. Washington (2020).
Meadows, V. S. & Crisp, D. Ground-based near-infrared observations of the Venus nightside: the thermal structure and water abundance near the surface. J. Geophys. Res. Planets 101, 4595–4622 (1996). DOI: 10.1029/95JE03567
Robinson, T. D. et al. Earth as an extrasolar planet: Earth model validation using EPOXI Earth observations. Astrobiology 11, 393–408 (2011). DOI: 10.1089/ast.2011.0642
Arney, G. et al. Spatially resolved measurements of H2O, HCl, CO, OCS, SO2, cloud opacity, and acid concentration in the Venus near-infrared spectral windows. J. Geophys. Res. Planets 119, 1860–1891 (2014). DOI: 10.1002/2014JE004662
Baraffe, I., Homeier, D., Allard, F. & Chabrier, G. New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit. Astron. Astrophys. 577, A42 (2015). DOI: 10.1051/0004-6361/201425481
Wright, N. J., Newton, E. R., Williams, P. K. G., Drake, J. J. & Yadav, R. K. The stellar rotation–activity relationship in fully convective M dwarfs. Mon. Not. R. Astron. Soc. 479, 2351–2360 (2018). DOI: 10.1093/mnras/sty1670
Dong, C. et al. Atmospheric escape from the TRAPPIST-1 planets and implications for habitability. Proc. Natl Acad. Sci. 115, 260–265 (2018). DOI: 10.1073/pnas.1708010115
Unterborn, C. T., Desch, S. J., Hinkel, N. R. & Lorenzo, A. Inward migration of the TRAPPIST-1 planets as inferred from their water-rich compositions. Nat. Astron. 2, 297–302 (2018). DOI: 10.1038/s41550-018-0411-6
Sotin, C., Grasset, O. & Mocquet, A. Mass radius curve for extrasolar Earth-like planets and ocean planets. Icarus 191, 337–351 (2007). DOI: 10.1016/j.icarus.2007.04.006
Brugger, B., Mousis, O., Deleuil, M. & Lunine, J. I. Possible internal structures and compositions of Proxima Centauri b. Astrophys. J. Lett. 831, L16 (2016). DOI: 10.3847/2041-8205/831/2/L16
Brugger, B., Mousis, O., Deleuil, M. & Deschamps, F. Constraints on super-Earth interiors from stellar abundances. Astrophys. J. 850, 93 (2017). DOI: 10.3847/1538-4357/aa965a
Mousis, O. et al. Irradiated ocean planets bridge super-Earth and sub-Neptune populations. Astrophys. J. Lett. 896, L22 (2020). DOI: 10.3847/2041-8213/ab9530
Marcq, E. A simple 1-D radiative-convective atmospheric model designed for integration into coupled models of magma ocean planets. J. Geophys. Res. Planets 117, E01001 (2012). DOI: 10.1029/2011JE003912
Marcq, E., Salvador, A., Massol, H. & Davaille, A. Thermal radiation of magma ocean planets using a 1-D radiative-convective model of H2O-CO2 atmospheres. J. Geophys. Res. Planets 122, 1539–1553 (2017). DOI: 10.1002/2016JE005224
Acuña, L., Deleuil, M. & Mousis, O. Interior-atmosphere modelling to assess the observability of rocky planets with JWST. Preprint at https://arxiv.org/abs/2305.01250 (2023).
Mann, A. W. et al. How to constrain your M dwarf. II. The mass–luminosity–metallicity relation from 0.075 to 0.70 solar masses. Astrophys. J. 871, 63 (2019). DOI: 10.3847/1538-4357/aaf3bc
Van Grootel, V. et al. Stellar parameters for Trappist-1. Astrophys. J. 853, 30 (2018). DOI: 10.3847/1538-4357/aaa023
Iyer, A. R., Line, M. R., Muirhead, P. S., Fortney, J. J. & Gharib-Nezhad, E. The SPHINX M-dwarf spectral grid. I. Benchmarking new model atmospheres to derive fundamental M-dwarf properties. Astrophys. J. 944, 41 (2023). DOI: 10.3847/1538-4357/acabc2
Fabrycky, D. C. in Exoplanets (ed. Seager, S.) 217–238 (Univ. Arizona Press, 2010).
Winn, J. N. in Exoplanets (ed. Seager, S.) 55–78 (Univ. Arizona Press, 2010).
Agol, E. et al. The climate of HD 189733b from fourteen transits and eclipses measured by Spitzer. Astrophys. J. 721, 1861–1877 (2010). DOI: 10.1088/0004-637X/721/2/1861
Lithwick, Y., Xie, J. & Wu, Y. Extracting planet mass and eccentricity from TTV data. Astrophys. J. 761, 122 (2012). DOI: 10.1088/0004-637X/761/2/122
Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020). DOI: 10.1038/s41586-020-2649-2
Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007). DOI: 10.1109/MCSE.2007.55
The Astropy Collaboration et al.The Astropy Project: sustaining and growing a community-oriented open-source project and the latest major release (v5.0) of the core package. Astrophys. J. 935, 167 (2022). DOI: 10.3847/1538-4357/ac7c74
Speagle, J. S. DYNESTY: a dynamic nested sampling package for estimating Bayesian posteriors and evidences. Mon. Not. R. Astron. Soc. 493, 3132–3158 (2020). DOI: 10.1093/mnras/staa278
Koposov, S. et al. joshspeagle/dynesty: v2.1.0. Zenodo 10.5281/zenodo.7600689 (2023).