[en] Circumbinary planets, those that orbit around both stars of a central binary star system, challenge our understanding of planet formation. With only 12 binary systems known to host circumbinary planets, identifying more of these planets, along with their physical properties, could help to discern some of the physical processes that govern planet formation. Here we analyse radial-velocity data obtained by the HARPS and ESPRESSO spectrographs and report the detection of BEBOP-1 c, a gas giant planet with a mass of 65.2 ± 11.8 Earth masses (M ⊕) orbiting around both stars of an eclipsing binary star system with a period of 215.5 ± 3.3 days. The system TOI-1338, hereafter referred to as BEBOP-1, which also hosts the smaller and inner transiting planet TOI-1338 b, is only the second confirmed multiplanetary circumbinary system. We do not detect TOI-1338 b with radial-velocity data alone, and we can place an upper limit on its mass of 21.8 M ⊕ with 99% confidence. TOI-1338 b is amenable to atmospheric characterization using JWST, so the BEBOP-1 system has the potential to act as a benchmark for circumbinary exo-atmospheric studies.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Standing, Matthew R. ; School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom ; School of Physical Sciences, The Open University, Milton Keynes, United Kingdom
Sairam, Lalitha; School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
Martin, David V. ; Department of Astronomy, The Ohio State University, Columbus, United States
Triaud, Amaury H. M. J. ; School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
Correia, Alexandre C. M. ; CFisUC, Departamento de Física, Universidade de Coimbra, Coimbra, Portugal ; IMCCE, UMR8028 CNRS, Observatoire de Paris, PSL Université, Paris, France
Coleman, Gavin A. L.; Astronomy Unit, Queen Mary University of London, London, United Kingdom
Baycroft, Thomas A. ; School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
Kunovac, Vedad ; Lowell Observatory, Flagstaff, United States ; Department of Astronomy and Planetary Science, Northern Arizona University, Flagstaff, United States
Cameron, Andrew Collier ; Centre for Exoplanet Science/SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, United Kingdom
Dransfield, Georgina; School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
Faria, João P. ; Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Porto, Portugal ; Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
Gillon, Michaël ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO)
Hara, Nathan C.; Observatoire Astronomique de l’Université de Genève, Versoix, Switzerland
Hellier, Coel; Astrophysics Group, Keele University, Keele, United Kingdom
Howard, Jonathan; School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
Lane, Ellie; School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
Mardling, Rosemary; School of Physics and Astronomy, Monash University, Monash, Australia
Maxted, Pierre F. L.; Astrophysics Group, Keele University, Keele, United Kingdom
Miller, Nicola J.; Astrophysics Group, Keele University, Keele, United Kingdom
Nelson, Richard P. ; Astronomy Unit, Queen Mary University of London, London, United Kingdom
Orosz, Jerome A. ; Department of Astronomy, San Diego State University, San Diego, United States
Pepe, Franscesco; Observatoire Astronomique de l’Université de Genève, Versoix, Switzerland
We would like to thank the ESO staff at La Silla and Paranal for their continued support throughout this work, especially through the COVID-19 pandemic, with special thanks to our ESPRESSO support astronomer M. Wittkowski. We also thank all of the observers who took part in the HARPS timeshare and were instrumental in collecting data for this project. We particularly thank X. Dumusque and F. Bouchy for their work in organizing the timeshare. This Article is based on observations collected at the European Southern Observatory under ESO programmes 103.2024, 106.216B, 1101.C-0721 and 106.212H. This research has made use of the services of the ESO Science Archive Facility. A.H.M.J.T. received funding from the European Research Council (ERC) under the European Union\u2019s Horizon 2020 research and innovation programme (grant agreement no. 803193/BEBOP) and from the Leverhulme Trust (research project no. RPG-2018-418) to conduct this research. M.R.S. would like to acknowledge the support of the UK Science and Technology Facilities Council (STFC) under grant number ST/T000295/1. A.C.M.C. acknowledges support from CFisUC (grant nos. UIDB/04564/2020 and UIDP/04564/2020), GRAVITY (grant no. PTDC/FIS-AST/7002/2020), PHOBOS (grant no. POCI-01-0145-FEDER-029932) and ENGAGE SKA (grant no. POCI-01-0145-FEDER-022217), funded by COMPETE 2020 and FCT, Portugal. The stability maps were performed at the OBLIVION Supercomputer (HPC Center \u2212 University of \u00C9vora), funded by ENGAGE SKA and by the BigData@UE project (grant no. ALT20-03-0246-FEDER-000033). Support for D.V.M. was provided by NASA through the NASA Hubble Fellowship grant no. HF2-51464 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract no. NAS5-26555. D.V.M. is a NASA Sagan Fellow. V.K. acknowledges support from NSF award no. AST2009501. A.S. received funding from the French government under the \u2018France 2030\u2019 investment plan managed by the French National Research Agency (reference nos. ANR-16-CONV-000X/ANR-17-EURE-00XX) and from Excellence Initiative of Aix-Marseille University\u2013A*MIDEX (reference no. AMX-21-IET-018). This work was supported by the \u2018Programme National de Plan\u00E9tologie\u2019 (PNP) of CNRS/INSU. J.P.F. received support in the form of a work contract funded by national funds through Funda\u00E7\u00E3o para a Ci\u00EAncia e a Tecnologia (FCT) with reference no. DL57/2016/CP1364/CT0005. A.C.C. acknowledges support from STFC consolidated grant nos. ST/R000824/1 and ST/V000861/1, and UKSA grant no. ST/R003203/1. M.G. is an FNRS Senior Research Associate. R.P.N. and G.A.L.C. utilized Queen Mary\u2019s Apocrita HPC facility, supported by QMUL Research-IT ( https://doi.org/10.5281/zenodo.438045 ). This work was performed using the DiRAC Data Intensive service at Leicester, operated by the University of Leicester IT Services, which forms part of the STFC DiRAC HPC Facility ( www.dirac.ac.uk ). The equipment was funded by BEIS capital funding via STFC capital grant nos. ST/K000373/1 and ST/R002363/1 and STFC DiRAC Operations grant no. ST/R001014/1. DiRAC is part of the National e-Infrastructure.
Doyle, L. R. et al. Kepler-16: a transiting circumbinary planet. Science 333, 1602–1606 (2011). DOI: 10.1126/science.1210923
Borucki, W. J. et al. Kepler planet-detection mission: introduction and first results. Science 327, 977–980 (2010). DOI: 10.1126/science.1185402
Ricker, G. R. et al. Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telesc. 1, 14003-1–14003-10 (2015).
Orosz, J. A. et al. Discovery of a third transiting planet in the Kepler-47 circumbinary system. Astron. J. 157, 174 (2019). DOI: 10.3847/1538-3881/ab0ca0
Meschiari, S. Circumbinary planet formation in the Kepler-16 system. I. N-body simulations. Astrophys. J. 752, 71 (2012). DOI: 10.1088/0004-637X/752/1/71
Lines, S., Leinhardt, Z. M., Paardekooper, S., Baruteau, C. & Thebault, P. Forming circumbinary planets: N-body simulations of Kepler-34. Astrophys. J. Lett. 782, L11 (2014). DOI: 10.1088/2041-8205/782/1/L11
Pierens, A., McNally, C. P. & Nelson, R. P. Hydrodynamical turbulence in eccentric circumbinary discs and its impact on the in situ formation of circumbinary planets. Mon. Not. R. Astron. Soc. 496, 2849–2867 (2020). DOI: 10.1093/mnras/staa1550
Martin, D. V. & Fitzmaurice, E. Running the gauntlet - survival of small circumbinary planets migrating through destabilising resonances. Mon. Not. R. Astron. Soc. 512, 602–616 (2022). DOI: 10.1093/mnras/stac090
Fitzmaurice, E., Martin, D. V. & Fabrycky, D. C. Sculpting the circumbinary planet size distribution through resonant interactions with companion planets. Mon. Not. R. Astron. Soc. 512, 5023–5036 (2022). DOI: 10.1093/mnras/stac741
Welsh, W. F. et al. Transiting circumbinary planets Kepler-34 b and Kepler-35 b. Nature 481, 475–479 (2012). DOI: 10.1038/nature10768
Kostov, V. B. et al. TIC 172900988: a transiting circumbinary planet detected in one sector of TESS data. Astron. J. 162, 234 (2021). DOI: 10.3847/1538-3881/ac223a
Triaud, A. H. M. J. et al. BEBOP III. Observations and an independent mass measurement of Kepler-16 (AB) b – the first circumbinary planet detected with radial velocities. Mon. Not. R. Astron. Soc. 511, 3561–3570 (2022). DOI: 10.1093/mnras/stab3712
Kempton, E. M. R. et al. A framework for prioritizing the TESS planetary candidates most amenable to atmospheric characterization. Publ. Astron. Soc. Pac. 130, 114401 (2018). DOI: 10.1088/1538-3873/aadf6f
Martin, D. V. et al. The BEBOP radial-velocity survey for circumbinary planets. I. Eight years of CORALIE observations of 47 single-line eclipsing binaries and abundance constraints on the masses of circumbinary planets. Astron. Astrophys. 624, A68 (2019). DOI: 10.1051/0004-6361/201833669
Martin, D. V. & Triaud, A. H. M. J. Planets transiting non-eclipsing binaries. Astron. Astrophys. 570, A91 (2014). DOI: 10.1051/0004-6361/201323112
Konacki, M., Muterspaugh, M. W., Kulkarni, S. R. & Hełminiak, K. G. The radial velocity Tatooine search for circumbinary planets: planet detection limits for a sample of double-lined binary stars—initial results from Keck I/Hires, Shane/CAT/Hamspec, and TNG/Sarg Observations. Astrophys. J. 704, 513–521 (2009). DOI: 10.1088/0004-637X/704/1/513
Kostov, V. B. et al. TOI-1338: TESS’ first transiting circumbinary planet. Astron. J. 159, 253 (2020). DOI: 10.3847/1538-3881/ab8a48
Triaud, A. H. et al. The EBLM Project. IV. Spectroscopic orbits of over 100 eclipsing M dwarfs masquerading as transiting hot Jupiters. Astron. Astrophys. 608, A129 (2017). DOI: 10.1051/0004-6361/201730993
Pepe, F. et al. HARPS: ESO’s coming planet searcher. Chasing exoplanets with the La Silla 3.6-m telescope. Messenger 110, 9–14 (2002).
Pepe, F. et al. ESPRESSO at VLT. On-sky performance and first results. Astron. Astrophys. 645, A96 (2021). DOI: 10.1051/0004-6361/202038306
Faria, J. P., Santos, N. C., Figueira, P. & Brewer, B. J. kima: exoplanet detection in radial velocities. J. Open Sour. Softw. 3, 487 (2018). DOI: 10.21105/joss.00487
Zucker, S. & Alexander, T. Spectroscopic binary mass determination using relativity. Astrophys. J. 654, L83–L86 (2007). DOI: 10.1086/510799
Konacki, M., Muterspaugh, M. W., Kulkarni, S. R. & Hełminiak, K. G. High-precision orbital and physical parameters of double-lined spectroscopic binary stars—HD78418, HD123999, HD160922, HD200077, and HD210027. Astrophys. J. 719, 1293–1314 (2010). DOI: 10.1088/0004-637X/719/2/1293
Sybilski, P., Konacki, M., Kozłowski, S. K. & Hełminiak, K. G. Non-Keplerian effects in precision radial velocity measurements of double-line spectroscopic binary stars: numerical simulations. Mon. Not. R. Astron. Soc. 431, 2024–2033 (2013). DOI: 10.1093/mnras/stt194
Arras, P., Burkart, J., Quataert, E. & Weinberg, N. N. The radial velocity signature of tides raised in stars hosting exoplanets. Mon. Not. R. Astron. Soc. 422, 1761–1766 (2012). DOI: 10.1111/j.1365-2966.2012.20756.x
Hara, N. C., Unger, N., Delisle, J.-B., Díaz, R. & Ségransan, D. Detecting exoplanets with the false inclusion probability. Comparison with other detection criteria in the context of radial velocities.Astron. Astrophys 663, A14 (2022). DOI: 10.1051/0004-6361/202140543
Hara, N. C., de Poyferré, T., Delisle, J.-B. & Hoffmann, M. A continuous multiple hypothesis testing framework for optimal exoplanet detection. Preprint at https://arXiv.org/abs/2203.04957 (2022).
Queloz, D. et al. No planet for HD 166435. Astron. Astrophys. 379, 279–287 (2001). DOI: 10.1051/0004-6361:20011308
Gomes da Silva, J. et al. Long-term magnetic activity of a sample of M-dwarf stars from the HARPS program. I. Comparison of activity indices. Astron. Astrophys. 534, A30 (2011). DOI: 10.1051/0004-6361/201116971
Schneider, J. On the occultations of a binary star by a circum-orbiting dark companion. Planet. Space Sci. 42, 539–544 (1994). DOI: 10.1016/0032-0633(94)90075-2
Kostov, V. B. et al. Kepler-413b: a slightly misaligned, Neptune-size transiting circumbinary planet. Astrophys. J. 784, 14 (2014). DOI: 10.1088/0004-637X/784/1/14
Welsh, W. F. et al. Kepler 453 b – the 10th Kepler transiting circumbinary planet. Astrophys. J. 809, 26 (2015). DOI: 10.1088/0004-637X/809/1/26
Martin, D. V. & Triaud, A. H. Circumbinary planets – why they are so likely to transit. Mon. Not. R. Astron. Soc. 449, 781–793 (2015). DOI: 10.1093/mnras/stv121
Martin, D. V. Circumbinary planets − II. When transits come and go. Mon. Not. R. Astron. Soc. 465, 3235–3253 (2017). DOI: 10.1093/mnras/stw2851
Pierens, A. & Nelson, R. P. On the migration of protoplanets embedded in circumbinary disks. Astron. Astrophys. 472, 993–1001 (2007). DOI: 10.1051/0004-6361:20077659
Pierens, A. & Nelson, R. P. On the evolution of multiple low mass planets embedded in a circumbinary disc. Astron. Astrophys. 478, 939–949 (2008). DOI: 10.1051/0004-6361:20078844
Penzlin, A. B. T., Kley, W., Audiffren, H. & Schäfer, C. M. Binary orbital evolution driven by a circumbinary disc. Astron. Astrophys. 660, A101 (2022). DOI: 10.1051/0004-6361/202141399
Chambers, J. E. A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Not. R. Astron. Soc. 304, 793–799 (1999). DOI: 10.1046/j.1365-8711.1999.02379.x
Chambers, J. E., Quintana, E. V., Duncan, M. J. & Lissauer, J. J. Symplectic integrator algorithms for modeling planetary accretion in binary star systems. Astron. J. 123, 2884–2894 (2002). DOI: 10.1086/340074
Coleman, G. A. L. & Haworth, T. J. Dispersal of protoplanetary discs: how stellar properties and the local environment determine the pathway of evolution. Mon. Not. R. Astron. Soc. 514, 2315–2332 (2022). DOI: 10.1093/mnras/stac1513
Lambrechts, M. & Johansen, A. Forming the cores of giant planets from the radial pebble flux in protoplanetary discs. Astron. Astophys. 572, A107 (2014). DOI: 10.1051/0004-6361/201424343
Paardekooper, S.-J., Baruteau, C. & Kley, W. A torque formula for non-isothermal Type I planetary migration – II. Effects of diffusion. Mon. Not. R. Astron. Soc. 410, 293–303 (2011). DOI: 10.1111/j.1365-2966.2010.17442.x
Coleman, G. A. L., Papaloizou, J. C. B. & Nelson, R. P. In situ accretion of gaseous envelopes on to planetary cores embedded in evolving protoplanetary discs. Mon. Not. R. Astron. Soc. 470, 3206–3219 (2017). DOI: 10.1093/mnras/stx1297
Poon, S. T. S., Nelson, R. P. & Coleman, G. A. L. In situ formation of hot Jupiters with companion super-Earths. Mon. Not. R. Astron. Soc. 505, 2500–2516 (2021). DOI: 10.1093/mnras/stab1466
Martin, D. V., Mazeh, T. & Fabrycky, D. C. No circumbinary planets transiting the tightest Kepler binaries – a possible fingerprint of a third star. Mon. Not. R. Astron. Soc. 453, 3554–3567 (2015). DOI: 10.1093/mnras/stv1870
Kunovac Hodžić, V. et al. The EBLM project − VII. Spin-orbit alignment for the circumbinary planet host EBLM J0608-59 A/TOI-1338 A. Mon. Not. R. Astron. Soc. 497, 1627–1633 (2020).
Mayor, M. et al. Setting new standards with HARPS. Messenger 114, 20–24 (2003).
Baranne, A. et al. ELODIE: a spectrograph for accurate radial velocity measurements. Astron. Astrophys. Suppl. Ser. 119, 373–390 (1996). DOI: 10.1051/aas:1996251
Standing, M. R. et al. BEBOP II: sensitivity to sub-Saturn circumbinary planets using radial-velocities. Mon. Not. R. Astron. Soc. 511, 3571–3583 (2022). DOI: 10.1093/mnras/stac113
Triaud, A. H. M. J. in Handbook of Exoplanets (eds Deeg, H. J. & Belmonte, J. A.) 1375–1401 (Springer Cham, 2018).
Kunovac Hodžić, V., Triaud, A. H. M. J., Cegla, H. M., Chaplin, W. J. & Davies, G. R. Orbital misalignment of the super-Earth π Men c with the spin of its star. Mon. Not. R. Astron. Soc. 502, 2893–2911 (2021). DOI: 10.1093/mnras/stab237
Faria, J. P. et al. A candidate short-period sub-Earth orbiting Proxima Centauri. Astron. Astrophys. 658, A115 (2022). DOI: 10.1051/0004-6361/202142337
Agol, E. et al. Refining the transit-timing and photometric analysis of TRAPPIST-1: masses, radii, densities, dynamics, and ephemerides. Planet. Sci. 2, 1 (2021). DOI: 10.3847/PSJ/abd022
Hogg, D. W., Bovy, J. & Lang, D. Data analysis recipes: fitting a model to data. Preprint at https://arXiv.org/abs/1008.4686 (2010).
Salvatier, J., Wiecki, T. & Fonnesbeck, C. Probabilistic programming in Python using PyMC. Preprint at https://arXiv.org/abs/1507.08050 (2015).
Brewer, B. J., Pártay, L. B. & Csányi, G. Diffusive nested sampling. Stat. Comput. 21, 649–656 (2011). DOI: 10.1007/s11222-010-9198-8
Feroz, F., Balan, S. T. & Hobson, M. P. Detecting extrasolar planets from stellar radial velocities using Bayesian evidence. Mon. Not. R. Astron. Soc. 415, 3462–3472 (2011). DOI: 10.1111/j.1365-2966.2011.18962.x
Brewer, B. J. Inference for trans-dimensional Bayesian models with diffusive nested sampling. Preprint at https://arXiv.org/abs/1411.3921 (2014). 1411.3921.
Baycroft, T. A., Triaud, A. H. M. J., Faria, J., Correia, A. C. M. & Standing, M. R. Improving circumbinary planet detections by fitting their binary’s apsidal precession. Mon. Not. R. Astron. Soc. 521, 1871–1879 (2023). DOI: 10.1093/mnras/stad607
Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995). DOI: 10.1080/01621459.1995.10476572
Trotta, R. Bayes in the sky: Bayesian inference and model selection in cosmology. Contemp. Phys. 49, 71–104 (2008). DOI: 10.1080/00107510802066753
Jeffreys, H. Theory of Probability (Oxford University Press, 1961).
McInnes, L., Healy, J. & Astels, S. hdbscan: hierarchical density based clustering. J. Open Sour. Softw. 2, 205 (2017).
Foreman-Mackey, D. corner.py: scatterplot matrices in python. J. Open Sour. Softw. 1, 24 (2016). DOI: 10.21105/joss.00024
Tuomi, M., Jones, H. R. A., Barnes, J. R., Anglada-Escudé, G. & Jenkins, J. S. Bayesian search for low-mass planets around nearby M dwarfs – estimates for occurrence rate based on global detectability statistics. Mon. Not. R. Astron. Soc. 441, 1545–1569 (2014). DOI: 10.1093/mnras/stu358
Gomes da Silva, J., Figueira, P., Santos, N. & Faria, J. ACTIN: a tool to calculate stellar activity indices. J. Open Sour. Softw. 3, 667 (2018). DOI: 10.21105/joss.00667
Zechmeister, M., Kürster, M. & Endl, M. The M dwarf planet search programme at the ESO VLT + UVES. A search for terrestrial planets in the habitable zone of M dwarfs. Astron. Astrophys. 505, 859–871 (2009). DOI: 10.1051/0004-6361/200912479
Pojmanski, G. The All Sky Automated Survey. Acta Astron. 47, 467–481 (1997).
Quarles, B., Satyal, S., Kostov, V., Kaib, N. & Haghighipour, N. Stability limits of circumbinary planets: is there a pile-up in the Kepler CBPs? Astrophys. J. 856, 150 (2018). DOI: 10.3847/1538-4357/aab264
Laskar, J. The chaotic motion of the solar system: a numerical estimate of the size of the chaotic zones. Icarus 88, 266–291 (1990). DOI: 10.1016/0019-1035(90)90084-M
Laskar, J. Frequency analysis for multi-dimensional systems. Global dynamics and diffusion. Phys. D 67, 257–281 (1993). DOI: 10.1016/0167-2789(93)90210-R
Correia, A. C. M. et al. The CORALIE survey for southern extra-solar planets. XIII. A pair of planets around HD 202206 or a circumbinary planet? Astron. Astrophys. 440, 751–758 (2005). DOI: 10.1051/0004-6361:20042376
Laskar, J. & Robutel, P. High order symplectic integrators for perturbed Hamiltonian systems. Celest. Mech. Dynam. Astron. 80, 39–62 (2001). DOI: 10.1023/A:1012098603882
Farago, F. & Laskar, J. High-inclination orbits in the secular quadrupolar three-body problem. Mon. Not. R. Astron. Soc. 401, 1189–1198 (2010). DOI: 10.1111/j.1365-2966.2009.15711.x
Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973).
D’Angelo, G. & Marzari, F. Outward migration of Jupiter and Saturn in evolved gaseous disks. Astrophys. J. 757, 50 (2012). DOI: 10.1088/0004-637X/757/1/50
Dullemond, C. P., Hollenbach, D., Kamp, I. & D’Alessio, P. in Protostars and Planets V (eds Reipurth, B. et al.) 555–572 (University of Arizona Press, 2007).
Matsuyama, I., Johnstone, D. & Hartmann, L. Viscous diffusion and photoevaporation of stellar disks. Astrophys. J. 582, 893–904 (2003). DOI: 10.1086/344638
Pierens, A. & Nelson, R. P. Migration and gas accretion scenarios for the Kepler 16, 34, and 35 circumbinary planets. Astron. Astrophys. 556, A134 (2013). DOI: 10.1051/0004-6361/201321777
Thun, D., Kley, W. & Picogna, G. Circumbinary discs: numerical and physical behaviour. Astron. Astrophys. 604, A102 (2017). DOI: 10.1051/0004-6361/201730666
Benítez-Llambay, P. & Masset, F. S. FARGO3D: a new GPU-oriented MHD code. Astrophys. J. Suppl. Ser. 223, 11 (2016). DOI: 10.3847/0067-0049/223/1/11
Coleman, G. A. L. & Nelson, R. P. On the formation of planetary systems via oligarchic growth in thermally evolving viscous discs. Mon. Not. R. Astron. Soc. 445, 479–499 (2014). DOI: 10.1093/mnras/stu1715
Daisaka, J. K., Tanaka, H. & Ida, S. Orbital evolution and accretion of protoplanets tidally interacting with a gas disk. II. Solid surface density evolution with type-I migration. Icarus 185, 492–507 (2006). DOI: 10.1016/j.icarus.2006.07.003
Cresswell, P. & Nelson, R. P. Three-dimensional simulations of multiple protoplanets embedded in a protostellar disc. Astron. Astrophys. 482, 677–690 (2008). DOI: 10.1051/0004-6361:20079178
Paardekooper, S.-J., Baruteau, C. & Kley, W. A torque formula for non-isothermal type I planetary migration − II. Effects of diffusion. Mon. Not. R. Astron. Soc. 410, 293–303 (2011). DOI: 10.1111/j.1365-2966.2010.17442.x
Crida, A., Morbidelli, A. & Masset, F. On the width and shape of gaps in protoplanetary disks. Icarus 181, 587–604 (2006). DOI: 10.1016/j.icarus.2005.10.007
Lin, D. N. C. & Papaloizou, J. On the tidal interaction between protoplanets and the protoplanetary disk. III. Orbital migration of protoplanets. Astrophys. J. 309, 846 (1986). DOI: 10.1086/164653
Lambrechts, M. & Johansen, A. Rapid growth of gas-giant cores by pebble accretion. Astron. Astrophys. 544, A32 (2012). DOI: 10.1051/0004-6361/201219127
Johansen, A. & Lambrechts, M. Forming planets via pebble accretion. Annu Rev. Earth Planet Sci. 45, 359–387 (2017). DOI: 10.1146/annurev-earth-063016-020226
Coleman, G. A. L., Nelson, R. P. & Triaud, A. H. M. J. Dusty circumbinary discs: inner cavity structures and stopping locations of migrating planets. Mon. Not. R. Astron. Soc. 513, 2563–2580 (2022). DOI: 10.1093/mnras/stac1029
Coleman, G. A. L. From dust to planets − I. Planetesimal and embryo formation. Mon. Not. R. Astron. Soc. 506, 3596–3614 (2021). DOI: 10.1093/mnras/stab1904
Holman, M. J. & Wiegert, P. A. Long-term stability of planets in binary systems. Astron. J. 117, 621–628 (1999). DOI: 10.1086/300695
Kane, S. R. & Hinkel, N. R. On the habitable zones of circumbinary planetary systems. Astrophys. J. 762, 7 (2013). DOI: 10.1088/0004-637X/762/1/7
Cutri, R. M. et al. 2MASS All-Sky Catalog of Point Sources (Cutri+ 2003) no. II/246 (VizieR Online Data Catalog, 2003).
Müller, T. W. A. & Haghighipour, N. Calculating the habitable zones of multiple star systems with a new interactive web site. Astrophys. J. 782, 26 (2014). DOI: 10.1088/0004-637X/782/1/26
Akeson, R. L. et al. The NASA exoplanet archive: data and tools for exoplanet research. Pub. Astron. Sos. Pac. 125, 989 (2013). DOI: 10.1086/672273
Astropy Collaboration et al. The Astropy Project: sustaining and growing a community-oriented open-source project and the latest major release (v5.0) of the core package. Astrophys. J. 935, 167 (2020).
Harris, C.R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).
McKinney, W. Data structures for statistical computing in Python. In Proc. 9th Python in Science Conference (eds van der Walt, S. & Millman, J.) 56–61 (SciPy, 2010).
Pauli, V. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Meth. 17, 261–272 (2020). DOI: 10.1038/s41592-019-0686-2
Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007). DOI: 10.1109/MCSE.2007.55