fluid; droplet; drop; groove; texture; substructure; condensation; transport; retention; dew; harvesting; constrained growth; Long range coalescence; drying
Abstract :
[en] Condensation on vertical surfaces leads to fluid retention, which limits the efficiency of applications ranging from heat exchangers to atmospheric water harvesters. A common strategy is to structure the surface with grooves, yet whether grooves help drainage or worsen retention remains unclear. Here we use a high-throughput condensation setup to quantify retention on substrates patterned with parallel vertical grooves of fixed geometry (𝑑/𝑤=1) while varying the spacing 𝑠. We uncover two opposite regimes separated by the droplet detachment radius 𝑅𝑑. For large spacings (𝑠>𝑅𝑑), droplets grow and slide under gravity while grooves, acting as passive reservoirs, increase retention. For small spacings (𝑠<𝑅𝑑), grooves instead trigger active drainage, confining droplet growth and reducing retention to values even lower than on smooth surfaces. Two asymptotic models, a groove-volume reservoir model and a plateau-packing model, capture this transition and explain the scaling of retention with 𝑠. These findings show that groove spacing controls whether grooves act as drains or reservoirs, providing a simple geometric design rule for tailoring condensation retention in practical systems.
Research Center/Unit :
CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège
Disciplines :
Physics
Author, co-author :
Léonard, Matteo ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM)
Vandewalle, Nicolas ; Université de Liège - ULiège > Département de physique > Physique statistique
Language :
English
Title :
Grooves spacing govern water retention during condensation
[1] W. Barthlott and C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta 202, 1 (1997).
[2] A.-K. Lenz, U. Bauer, and G. D. Ruxton, An ecological perspective on water shedding from leaves, J. Exp. Bot. 73, 1176 (2022).
[3] J. W. Rose, Dropwise condensation theory and experiment: A review, Proc. Inst. Mech. Eng. Part A 216, 115 (2002).
[4] S. Kim and K. J. Kim, Dropwise condensation modeling suitable for superhydrophobic surfaces, J. Heat Transfer 133, 081502 (2011).
[5] R. D. Narhe and D. A. Beysens, Nucleation and growth on a superhydrophobic grooved surface, Phys. Rev. Lett. 93, 076103 (2004).
[6] K. Wier and T. McCarthy, Condensation on ultrahydrophobic surfaces and its effect on droplet mobility: Ultrahydrophobic surfaces are not always water repellant, Langmuir 22, 2433 (2006).
[7] Water and Climate Change, UN Water, ed., The United Nations world water development Report No. 2020 (UNESCO, Paris, 2020).
[8] W. Shi, M. J. Anderson, J. B. Tulkoff, B. S. Kennedy, and J. B. Boreyko, Fog harvesting with harps, ACS Appl. Mater. Interfaces 10, 11979 (2018).
[9] M. Muselli, D. Beysens, M. Mileta, and I. Milimouk, Dew and rain water collection in the Dalmatian Coast, Croatia, Atmos. Res. 92, 455 (2009).
[10] J. Van Hulle and N. Vandewalle, Effect of groove curvature on droplet spreading, Soft Matter 19, 4669 (2023).
[11] H. Chen, T. Ran, Y. Gan, J. Zhou, Y. Zhang, L. Zhang, D. Zhang, and L. Jiang, Ultrafast water harvesting and transport in hierarchical microchannels, Nat. Mater. 17, 935 (2018).
[12] M. Leonard, J. Van Hulle, F. Weyer, D. Terwagne, and N. Vandewalle, Droplets sliding on single and multiple vertical fibers, Phys. Rev. Fluids 8, 103601 (2023).
[13] J. Van Hulle, F. Weyer, S. Dorbolo, and N. Vandewalle, Capillary transport from barrel to clamshell droplets on conical fibers, Phys. Rev. Fluids 6, 024501 (2021).
[14] H. G. Andrews, E. A. Eccles, W. C. E. Schofield, and J. P. S. Badyal, Three-dimensional hierarchical structures for fog harvesting, Langmuir 27, 3798 (2011).
[15] S. Protiere, C. Duprat, and H. A. Stone, Wetting on two parallel fibers: Drop to column transitions, Soft Matter 9, 271 (2013).
[16] K.-C. Park, P. Kim, A. Grinthal, N. He, D. Fox, J. C.Weaver, and J. Aizenberg, Condensation on slippery asymmetric bumps, Nature (London) 531, 78 (2016).
[17] P.-B. Bintein, H. Lhuissier, A. Mongruel, L. Royon, and D. Beysens, Grooves accelerate dew shedding, Phys. Rev. Lett. 122, 098005 (2019).
[18] N. Lavielle, A. Mongruel, T. Bourouina, L. Royon, and D. Beysens, Plastic foil micro-grooved by embossing enhances dew collection without aging effects, Mater. Today Sustain. 24, 100566 (2023).
[19] P. Pou-Álvarez, A. Mongruel, N. Lavielle, A. Riveiro, T. Bourouina, L. Royon, J. Pou, and D. Beysens, Efficient autonomous dew water harvesting by laser micropatterning: Superhydrophilic and high emissivity robust grooved metallic surfaces enabling filmwise condensation and radiative cooling, Adv. Mater. 37, 2419472 (2025).
[20] J. Trosseille, A. Mongruel, L. Royon, M.-G. Medici, and D. Beysens, Roughness-enhanced collection of condensed droplets, Eur. Phys. J. E 42, 144 (2019).
[21] Y. Jin, L. Zhang, and P. Wang, Atmospheric water harvesting: Role of surface wettability and edge effect, Glob. Chall. 1, 1700019 (2017).
[22] A. Jacobs, B. Heusinkveld, and S. Berkowicz, Passive dew collection in a grassland area, the netherlands, Atmos. Res. 87, 377 (2008).
[23] G. Gittens, Variation of surface tension of water with temperature, J. Colloid Interface Sci. 30, 406 (1969).
[24] N. Lavielle, D. Beysens, and A. Mongruel, Memory re-condensation, Langmuir 39, 2008 (2023).
[25] C. Extrand and A. Gent, Retention of liquid drops by solid surfaces, J. Colloid Interface Sci. 138, 431 (1990).
[26] N. Gao, F. Geyer, D. W. Pilat, S. Wooh, D. Vollmer, H.-J. Butt, and R. Berger, How drops start sliding over solid surfaces, Nat. Phys. 14, 191 (2018).
[27] T. Podgorski, J.-M. Flesselles, and L. Limat, Corners, cusps, and pearls in running drops, Phys. Rev. Lett. 87, 036102 (2001).
[28] N. Le Grand, A. Daerr, and L. Limat, Shape and motion of drops sliding down an inclined plane, J. Fluid Mech. 541, 293 (2005).
[29] See Supplemental Material at http://link.aps.org/supplemental/10.1103/zpxp-yxnk for full overview videos from Fig. 2 (s80.avi) and Fig. 3 (s05dw1.avi). Complete videos of Fig. 4 are also available (left: s10dw1.avi; right: s15dw1.avi).
[30] R. Seemann, M. Brinkmann, E. J. Kramer, F. F. Lange, and R. Lipowsky, Wetting morphologies at microstructured surfaces, Proc. Natl. Acad. Sci. USA 102, 1848 (2005).
[31] R. Seemann, M. Brinkmann, S. Herminghaus, K. Khare, B. M. Law, S. McBride, K. Kostourou, E. Gurevich, S. Bommer, C. Herrmann, and D. Michler, Wetting morphologies and their transitions in grooved substrates, J. Phys.: Condens. Matter 23, 184108 (2011).
[32] R. D. Narhe and D. A. Beysens, Water condensation on a super-hydrophobic spike surface, Europhys. Lett. 75, 98 (2006).
[33] D. Beysens, Dew Water, 1st ed. (River Publishers, New York, 2018).