Article (Scientific journals)
How Good Is the Machine at the Imitation Game? On Stylistic Characteristics of AI-Generated Images
Deliège, Adrien; Marlot, Jeanne; Van Droogenbroeck, Marc et al.
2025In Journal of Imaging, 11 (12), p. 429
Peer Reviewed verified by ORBi
 

Files


Full Text
jimaging-11-00429.pdf
Publisher postprint (20.22 MB) Creative Commons License - Attribution
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
text-to-image generation; Midjourney; artistic style; art history; visual semiotics; stylistic fidelity; expert evaluation
Abstract :
[en] Text-to-image generative models can be used to imitate historical artistic styles, but their effectiveness in doing so remains unclear. In this work, we propose an evaluation framework that leverages expert knowledge from art history and visual semiotics and combines it with quantitative analysis to assess stylistic fidelity. Three experts rated both historical artwork production and images generated with Midjourney v6 for five major movements (Abstract Art, Cubism, Expressionism, Impressionism, Surrealism) and ten associated painters (male and female pairs), using nine visual criteria grounded in Greimas’s plastic categories and Wölfflin’s stylistic oppositions. Ratings were expressed as 95% intervals on continuous 0–100 scales and compared using our Relative Ratings Map (RRMap), which summarizes relative shifts, relative dispersion, and distributional overlap (via the Bhattacharyya coefficient). They were also discretized in four quality ratings (bad, stereotype, fair, excellent). The results show strong inter-expert variability and more moderate intra-expert effects tied to movements, criteria, criterion groups and modalities. Experts tend to agree that the model sometimes aligns with historical trends but also sometimes produces stereotyped versions of a movement or painter, or even completely missed its target, although no unanimous consensus emerges. We conclude that evaluating generative models requires both expert-driven interpretation and quantitative tools, and that stylistic fidelity is hard to quantify even with a rigorous framework.
Research Center/Unit :
Montefiore Institute - Montefiore Institute of Electrical Engineering and Computer Science - ULiège
VIULab
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Deliège, Adrien  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Télécommunications ; F.R.S.-FNRS, Rue d’Egmont 5, 1000 Brussels, Belgium
Marlot, Jeanne  ;  Université de Liège - ULiège > Département de langues et littératures romanes > Sciences du langage - Rhétorique
Van Droogenbroeck, Marc  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Télécommunications
Dondero, Maria Giulia  ;  Université de Liège - ULiège > Département de langues et littératures romanes > Sciences du langage - Rhétorique ; F.R.S.-FNRS, Rue d’Egmont 5, 1000 Brussels, Belgium
Language :
English
Title :
How Good Is the Machine at the Imitation Game? On Stylistic Characteristics of AI-Generated Images
Publication date :
02 December 2025
Journal title :
Journal of Imaging
eISSN :
2313-433X
Publisher :
MDPI AG
Volume :
11
Issue :
12
Pages :
429
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
ULiège research project DESTINA
Funders :
ULiège - Université de Liège
Available on ORBi :
since 04 December 2025

Statistics


Number of views
28 (4 by ULiège)
Number of downloads
36 (2 by ULiège)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenCitations
 
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBi