canopy cover; disturbance; enhanced vegetation index; forest structure; mangroves; normalized difference infrared index; remote sensing; resilience; tropical cyclones; Global and Planetary Change; Ecology, Evolution, Behavior and Systematics; Ecology
Abstract :
[en] Aim: Tropical cyclones are large-scale disturbances that can shape the structure and dynamics of mangrove forests. Although tropical cyclone activity overlaps extensively with the latitudinal distribution of mangrove forests, the relationships between cyclone intensity and frequency and mangrove forest canopy damage and recovery are not understood at the global scale. Using remote sensing data, we examined how mangrove forest structure, climate and cyclone characteristics influence canopy cover loss and recovery dynamics. Location: Global tropics. Time period: 2000–2020. Major taxa studied: Mangrove trees. Methods: Using two satellite-derived vegetation indices (the enhanced vegetation index and the normalized difference infrared index) from 86 cyclones affecting 56 mangrove sites across the globe, we quantified mangrove canopy loss in relationship to cyclones. Using linear regression and variance decomposition, we identified and ranked significant predictors of cyclone-induced canopy loss and recovery. Results: Three-quarters of the studied cyclone disturbances resulted in canopy damage. Stands exposed to high wind speeds and those close to the cyclone paths were more severely damaged, whereas lower damage magnitudes were found in sites with greater past cyclone frequency. Canopy damage was greater in tall mangrove stands but decreased with higher aboveground biomass. The distance from the cyclone path and maximum wind speed were the most important factors, representing > 50% of the explained variation in cyclone damage. There was considerable variation in canopy damage among cyclones, but rates of recovery were similar across all mangrove sites, with the main predictor of recovery time being the degree of canopy loss. Main conclusions: Our results suggest that the resistance of mangrove canopy cover to cyclone disturbance is variably tuned to the cyclone regime and vegetation characteristics, but resilience is inherent to the magnitude of canopy damage because the rate of forest canopy recovery appears to be consistent globally.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Peereman, Jonathan ; Université de Liège - ULiège > Sphères ; Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
Hogan, J. Aaron ; Department of Biological Sciences, Florida International University, Miami, United States
Lin, Teng-Chiu ; Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
Language :
English
Title :
Disturbance frequency, intensity and forest structure modulate cyclone-induced changes in mangrove forest canopy cover
Ministry of Science and Technology grant number: MOST 107‐2313‐B‐003‐001‐MY3Ministry of Science and Technology grant number: MOST 107-2313-B-003-001-MY3 We thank Pei-Jen Lee Shaner for assistance with statistical analysis. We acknowledge the use of Landsat data, which are a NASA product. This research is supported by grants from the Ministry of Science and Technology (MOST 107-2313-B-003-001-MY3).
Adame, M. F., Zaldívar-Jimenez, A., Teutli, C., Caamal, J. P., Andueza, M. T., López-Adame, H., Cano, R., Hernández-Arana, H. A., Torres-Lara, R., & Herrera-Silveira, J. A. (2013). Drivers of mangrove litterfall within a karstic region affected by frequent hurricanes. Biotropica, 45, 147–154. https://doi.org/10.1111/btp.12000
Allen, J. A., Ewel, K. C., Keeland, B. D., Tara, T., & Smith, T. J. (2000). Downed wood in Micronesian mangrove forests. Wetlands, 20, 169–176. https://doi.org/10.1672/0277-5212(2000)020[0169:DWIMMF]2.0.CO;2
Alongi, D. M. (2015). The impact of climate change on mangrove forests. Current Climate Change Reports, 1, 30–39. https://doi.org/10.1007/s40641-015-0002-x
Altman, J., Ukhvatkina, O. N., Omelko, A. M., Macek, M., Plener, T., Pejcha, V., Cerny, T., Petrik, P., Srutek, M., Song, J.-S., Zhmerenetsky, A. A., Vozmishcheva, A. S., Krestov, P. V., Petrenko, T. Y., Treydte, K., & Dolezal, J. (2018). Poleward migration of the destructive effects of tropical cyclones during the 20th century. Proceedings of the National Academy of Sciences USA, 115, 11543–11548. https://doi.org/10.1073/pnas.1808979115
Barr, J. G., Engel, V., Smith, T. J., & Fuentes, J. D. (2012). Hurricane disturbance and recovery of energy balance, CO2 fluxes and canopy structure in a mangrove forest of the Florida Everglades. Agricultural and Forest Meteorology, 153, 54–66. https://doi.org/10.1016/j.agrformet.2011.07.022
Branoff, B. L. (2017). Quantifying the influence of urban land use on mangrove biology and ecology: A meta-analysis. Global Ecology and Biogeography, 26, 1339–1356. https://doi.org/10.1111/geb.12638
Bunting, P., Rosenqvist, A., Lucas, R., Rebelo, L.-M., Hilarides, L., Thomas, N., Hardy, A., Itoh, T., Shimada, M., & Finlayson, C. (2018). The global mangrove watch—A new 2010 global baseline of mangrove extent. Remote Sensing, 10, 1669. https://doi.org/10.3390/rs10101669
Cameron, C., Kennedy, B., Tuiwawa, S., Goldwater, N., Soapi, K., & Lovelock, C. E. (2021). High variance in community structure and ecosystem carbon stocks of Fijian mangroves driven by differences in geomorphology and climate. Environmental Research, 192, 110213. https://doi.org/10.1016/j.envres.2020.110213
Castañeda-Moya, E., Rivera-Monroy, V. H., Chambers, R. M., Zhao, X., Lamb-Wotton, L., Gorsky, A., Gaiser, E. E., Troxler, T. G., Kominoski, J. S., & Hiatt, M. (2020). Hurricanes fertilize mangrove forests in the Gulf of Mexico (Florida Everglades, USA). Proceedings of the National Academy of Sciences USA, 117, 4831–4841. https://doi.org/10.1073/pnas.1908597117
Castañeda-Moya, E., Twilley, R. R., & Rivera-Monroy, V. H. (2013). Allocation of biomass and net primary productivity of mangrove forests along environmental gradients in the Florida Coastal Everglades, USA. Forest Ecology and Management, 307, 226–241. https://doi.org/10.1016/j.foreco.2013.07.011
Cheng, Y.-B., Zarco-Tejada, P. J., Riaño, D., Rueda, C. A., & Ustin, S. L. (2006). Estimating vegetation water content with hyperspectral data for different canopy scenarios: Relationships between AVIRIS and MODIS indexes. Remote Sensing of Environment, 105, 354–366. https://doi.org/10.1016/j.rse.2006.07.005
Chi, C.-H., McEwan, R. W., Chang, C.-T., Zheng, C., Yang, Z., Chiang, J.-M., & Lin, T.-C. (2015). Typhoon disturbance mediates elevational patterns of forest structure, but not species diversity, in humid monsoon Asia. Ecosystems, 18, 1410–1423. https://doi.org/10.1007/s10021-015-9908-3
de Gouvenain, R. C., & Silander, J. A. (2003). Do tropical storm regimes influence the structure of tropical lowland rain forests? Biotropica, 35, 166–180. https://doi.org/10.1111/j.1744-7429.2003.tb00276.x
Din, N., Saenger, P., Jules, P. R., Siegfried, D. D., & Basco, F. (2008). Logging activities in mangrove forests: A case study of Douala Cameroon. African Journal of Environmental Science and Technology, 2, 22–30.
Doyle, T. W., & Girod, G. F. (1997). The frequency and intensity of Atlantic hurricanes and their influence on the structure of South Florida mangrove communities. In H. F. Diaz, & R. S. Pulwarty (Eds.), Hurricanes: Climate and socioeconomic impacts (pp. 109–120). Springer.
Doyle, T. W., Smith, T. J., & Robblee, M. B. (1995). Wind damage effects of Hurricane Andrew on mangrove communities along the southwest coast of Florida, USA [Special issue]. Journal of Coastal Research, (21), 159–168.
Duke, N. C. (2001). Gap creation and regenerative processes driving diversity and structure of mangrove ecosystems. Wetlands Ecology and Management, 9, 267–279. https://doi.org/10.1023/A:1011121109886
Ferwerda, J. G., Ketner, P., & McGuinness, K. A. (2007). Differences in regeneration between hurricane damaged and clear-cut mangrove stands 25 years after clearing. Hydrobiologia, 591, 35–45. https://doi.org/10.1007/s10750-007-0782-7
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302–4315. https://doi.org/10.1002/joc.5086
Flynn, D. F. B., Uriarte, M., Crk, T., Pascarella, J. B., Zimmerman, J. K., Aide, T. M., & Ortiz, M. A. C. (2010). Hurricane disturbance alters secondary forest recovery in Puerto Rico. Biotropica, 42, 149–157. https://doi.org/10.1111/j.1744-7429.2009.00581
Gang, C., Pan, S., Tian, H., Wang, Z., Xu, R., Bian, Z., Pan, N., Yao, Y., & Shi, H. (2020). Satellite observations of forest resilience to hurricanes along the northern Gulf of Mexico. Forest Ecology and Management, 472, 118243. https://doi.org/10.1016/j.foreco.2020.118243
Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A., Loveland, T., Masek, J., & Duke, N. (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, 20, 154–159. https://doi.org/10.1111/j.1466-8238.2010.00584.x
Gough, C. M., Atkins, J. W., Bond-Lamberty, B., Agee, E. A., Dorheim, K. R., Fahey, R. T., Grigri, M. S., Haber, L. T., Mathes, K. C., Pennington, S. C., Shiklomanov, A. N., & Tallant, J. M. (2021). Forest structural complexity and biomass predict first-year carbon cycling responses to disturbance. Ecosystems, 24, 699–712. https://doi.org/10.1007/s10021-020-00544-1
Grömping, U. (2006). Relative importance for linear regression in R: The package relaimpo. Journal of Statistical Software, 17(1), 1–27. https://doi.org/10.18637/jss.v017.i01
Hall, J., Muscarella, R., Quebbeman, A., Arellano, G., Thompson, J., Zimmerman, J. K., & Uriarte, M. (2020). Hurricane-induced rainfall is a stronger predictor of tropical forest damage in Puerto Rico than maximum wind speeds. Scientific Reports, 10, 4318. https://doi.org/10.1038/s41598-020-61164-2
Hardisky, M. A., Klemas, V., & Smart, R. M. (1983). The influence of soil salinity, growth form, and leaf moisture on the spectral reflectance of Spartina alterniflora canopies. Photogrammetric Engineering and Remote Sensing, 49, 77–83.
Herberich, E., Sikorski, J., & Hothorn, T. (2010). A robust procedure for comparing multiple means under heteroscedasticity in unbalanced designs. PLoS One, 5, e9788. https://doi.org/10.1371/journal.pone.0009788
Hijmans, R. J. (2019). raster: Geographic data analysis and modeling (Version 2.9-23). Retrieved from https://CRAN.R-project.org/package=raster
Hogan, J. A., Zimmerman, J. K., Thompson, J., Uriarte, M., Swenson, N. G., Condit, R., & Davies, S. J. (2018). The frequency of cyclonic wind storms shapes tropical forest dynamism and functional trait dispersion. Forests, 9, 404. https://doi.org/10.3390/f9070404
Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4, 1–23. https://doi.org/10.1146/annurev.es.04.110173.000245
Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical Journal, 50, 346–363. https://doi.org/10.1002/bimj.200810425
Huete, A. R., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83, 195–213. https://doi.org/10.1016/s0034-4257(02)00096-2
Huete, A. R., Liu, H., & van Leeuwen, W. J. (1997). The use of vegetation indices in forested regions: Issues of linearity and saturation. Paper presented to the 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing—A Scientific Vision for Sustainable Development, Singapore.
Ibanez, T., Keppel, G., Menkes, C., Gillespie, T. W., Lengaigne, M., Mangeas, M., Rivas-Torres, G., & Birnbaum, P. (2018). Globally consistent impact of tropical cyclones on the structure of tropical and subtropical forests. Journal of Ecology, 107, 279–292. https://doi.org/10.1111/1365-2745.13039
Imbert, D. (2018). Hurricane disturbance and forest dynamics in east Caribbean mangroves. Ecosphere, 9, e02231. https://doi.org/10.1002/ecs2.2231
Kauffman, J. B., & Cole, T. G. (2010). Micronesian mangrove forest structure and tree responses to a severe typhoon. Wetlands, 30, 1077–1084. https://doi.org/10.1007/s13157-010-0114-y
Kim, D., Millington, A. C., & Lafon, C. W. (2020). Disturbance after disturbance: Combined effects of two successive hurricanes on forest community structure. Annals of the American Association of Geographers, 110, 571–585. https://doi.org/10.1080/24694452.2019.1654844
Knapp, K. R., Diamond, H. J., Kossin, J. P., Kruk, M. C., & Schreck, C. J. (2018). International best track archive for climate stewardship (IBTrACS) project, Version 4. [IBTrACS.ALL.list.v04r00] NOAA National Centers for Environmental Information. https://doi.org/10.25921/82ty-9e16
Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J., & Neumann, C. J. (2010). The international best track archive for climate stewardship (IBTrACS): Unifying tropical cyclone best track data. Bulletin of the American Meteorological Society, 91, 363–376. https://doi.org/10.1175/2009BAMS2755.1
Kossin, J. P., Knapp, K. R., Olander, T. L., & Velden, C. S. (2020). Global increase in major tropical cyclone exceedance probability over the past four decades. Proceedings of the National Academy of Sciences USA, 117, 11975–11980. https://doi.org/10.1073/pnas.1920849117
Kosugi, R., Shibuya, M., & Ishibashi, S. (2016). Sixty-year post-windthrow study of stand dynamics in two natural forests differing in pre-disturbance composition. Ecosphere, 7, e01571. https://doi.org/10.1002/ecs2.1571
Krauss, K. W., & Osland, M. J. (2020). Tropical cyclones and the organization of mangrove forests: A review. Annals of Botany, 125, 213–234. https://doi.org/10.1093/aob/mcz161
Lagomasino, D., Fatoyinbo, T., Castañeda-Moya, E., Cook, B. D., Montesano, P. M., Neigh, C. S. R., & Morton, D. C. (2021). Storm surge and ponding explain mangrove dieback in southwest Florida following Hurricane Irma. Nature Communications, 12, 4003. https://doi.org/10.1038/s41467-021-24253-y
Lin, K.-C., Hamburg, S. P., Tang, S.-L., Hsia, Y.-J., & Lin, T.-C. (2003). Typhoon effects on litterfall in a subtropical forest. Canadian Journal of Forest Research, 33, 2184–2192. https://doi.org/10.1139/x03-154
Lin, T.-C., Hamburg, S. P., Lin, K.-C., Wang, L.-J., Chang, C.-T., Hsia, Y.-J., & Liu, C.-P. (2011). Typhoon disturbance and forest dynamics: Lessons from a Northwest Pacific subtropical forest. Ecosystems, 14, 127–143. https://doi.org/10.1007/s10021-010-9399-1
Lin, T.-C., Hogan, J. A., & Chang, C.-T. (2020). Tropical cyclone ecology: A scale-link perspective. Trends in Ecology and Evolution, 7, 594–604. https://doi.org/10.1016/j.tree.2020.02.012
Lindeman, R. H., Merenda, P. F., & Gold, R. Z. (1980). Introduction to bivariate and multivariate analysis. Scott.
Lovelock, C. E., Cahoon, D. R., Friess, D. A., Guntenspergen, G. R., Krauss, K. W., Reef, R., & Triet, T. (2015). The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature, 526, 559–563. https://doi.org/10.1038/nature15538
Mabry, C. M., Hamburg, S. P., Lin, T.-C., Horng, F.-W., King, H.-B., & Hsia, Y.-J. (1998). Typhoon disturbance and stand-level damage patterns at a subtropical forest in Taiwan. Biotropica, 30, 238–250. https://doi.org/10.1111/j.1744-7429.1998.tb00058.x
Nakasuga, T. (1979). Analysis of the mangrove stand. The Science Bulletin of the Faculty of Agriculture. University of the Ryukyus, Okinawa, 26, 413–519.
Pastor-Guzman, J., Dash, J., & Atkinson, P. M. (2018). Remote sensing of mangrove forest phenology and its environmental drivers. Remote Sensing of Environment, 205, 71–84. https://doi.org/10.1016/j.rse.2017.11.009
Peereman, J., Hogan, J. A., & Lin, T.-C. (2020). Assessing typhoon-induced canopy damage using vegetation indices in the Fushan Experimental Forest, Taiwan. Remote Sensing, 12, 1654. https://doi.org/10.3390/rs12101654
Peneva-Reed, E. I., Krauss, K. W., Bullock, E. L., Zhu, Z., Woltz, V. L., Drexler, J. Z., & Stehman, S. V. (2020). Carbon stock losses and recovery observed for a mangrove ecosystem following a major hurricane in Southwest Florida. Estuarine, Coastal and Shelf Science, 248, 106750. https://doi.org/10.1016/j.ecss.2020.106750
R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/
Radabaugh, K. R., Moyer, R. P., Chappel, A. R., Dontis, E. E., Russo, C. E., Joyse, K. M., & Khan, N. S. (2020). Mangrove damage, delayed mortality, and early recovery following Hurricane Irma at two landfall sites in Southwest Florida, USA. Estuaries and Coasts, 43, 1104–1118. https://doi.org/10.1007/s12237-019-00564-8
Roth, L. C. (1992). Hurricanes and mangrove regeneration: Effects of Hurricane Joan, October 1988, on the vegetation of Isla del Venado, Bluefields, Nicaragua. Biotropica, 24, 375–384. https://doi.org/10.2307/2388607
Rovai, A. S., Coelho-Jr, C., de Almeida, R., Cunha-Lignon, M., Menghini, R. P., Twilley, R. R., Cintrón-Molero, G., & Schaeffer-Novelli, Y. (2021). Ecosystem-level carbon stocks and sequestration rates in mangroves in the Cananéia-Iguape lagoon estuarine system, southeastern Brazil. Forest Ecology and Management, 479, 118553. https://doi.org/10.1016/j.foreco.2020.118553
Rovai, A. S., Riul, P., Twilley, R. R., Castañeda-Moya, E., Rivera-Monroy, V. H., Williams, A. A., Simard, M., Cifuentes-Jara, M., Lewis, R. R., Crooks, S., Horta, P. A., Schaeffer-Novelli, Y., Cintrón, M., Pozo-Cajas, P., & Pagliosa, P. R. (2016). Scaling mangrove aboveground biomass from site-level to continental-scale. Global Ecology and Biogeography, 25, 286–298. https://doi.org/10.1111/geb.12409
Simard, M., Fatoyinbo, L., Smetanka, C., Rivera-Monroy, V. H., Castañeda-Moya, E., Thomas, N., & Van der Stocken, T. (2019a). Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nature Geoscience, 12, 40–45. https://doi.org/10.1038/s41561-018-0279-1
Simard, M., Fatoyinbo, T., Smetanka, C., Rivera-Monroy, V. H., Castaneda-Mova, E., Thomas, N., & Van Der Stocken, T. (2019b). Global mangrove distribution, aboveground biomass, and canopy height. Retrieved from https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1665
Simpson, R. H., & Riehl, H. (1981). The hurricane and its impact. Louisiana State University Press.
Smith, T. J. III, Robblee, M. B., Wanless, H. R., & Doyle, T. W. (1994). Mangroves, hurricanes, and lightning strikes: Assessment of Hurricane Andrew suggests an interaction across two differing scales of disturbance. BioScience, 44, 256–262. https://doi.org/10.2307/1312230
Taillie, P. J., Roman-Cuesta, R., Lagomasino, D., Cifuentes-Jara, M., Fatoyinbo, T., Ott, L. E., & Poulter, B. (2020). Widespread mangrove damage resulting from the 2017 Atlantic mega hurricane season. Environmental Research Letters, 15, 064010. https://doi.org/10.1088/1748-9326/ab82cf
UNEP-WCMC, I. (2020). Protected planet: The World Database on Protected Areas (WDPA). Retrieved from https://www.protectedplanet.net/en
Wang, F., & Xu, Y. J. (2009). Hurricane Katrina-induced forest damage in relation to ecological factors at landscape scale. Environmental Monitoring and Assessment, 156, 494–507. https://doi.org/10.1007/s10661-008-0500-6
Wang, S., & Toumi, R. (2021). Recent migration of tropical cyclones toward coasts. Science, 371, 514–517. https://doi.org/10.1126/science.abb9038
Zeileis, A., Köll, S., & Graham, N. (2020). Various versatile variances: An object-oriented implementation of clustered covariances in R. Journal of Statistical Software, 95, 36. https://doi.org/10.18637/jss.v095.i01
Zhang, C., Durgan, S. D., & Lagomasino, D. (2019). Modeling risk of mangroves to tropical cyclones: A case study of Hurricane Irma. Estuarine, Coastal and Shelf Science, 224, 108–116. https://doi.org/10.1016/j.ecss.2019.04.052
Zhang, K., Thapa, B., Ross, M., & Gann, D. (2016). Remote sensing of seasonal changes and disturbances in mangrove forest: A case study from South Florida. Ecosphere, 7, e01366. https://doi.org/10.1002/ecs2.1366