[en] The growing emphasis on sustainable industrial practices has intensified the need for environmental assessments of refractory materials, which are integral to high-temperature processes across sectors such as metallurgy, cement, and glass production. This review examines the application of life cycle assessment (LCA) and carbon footprint (CF) to refractories, providing an in-depth analysis of current practices, key challenges, and potential paths for improvement. This review identified the system boundaries definition, the choice of the impact assessment methodology and the data quality as key methodological challenges driving the quality, accuracy, reliability and comparability of LCA studies. Recognising such challenges, this article advocates for standardised guidelines to enhance and homogenise methodological practices, guarantee cross-study comparisons, and efficiently support decision-making for sustainability. Additionally, transitioning from CF to LCA approaches is emphasised to avoid trade-offs across environmental impact categories. Lastly, establishing a collaborative network for data collection and sharing is fundamental to address the data quality criticality and enlarge the system boundaries both upstream and downstream. Finally, this review identified common trends in critical environmental domains and impacting processes.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Badioli, Sarah ; Université de Liège - ULiège > Chemical engineering ; Saint-Gobain Research Provence, Performance Ceramics and Refractories, Cavaillon, France
Jubayed, MD ; Université de Liège - ULiège > Chemical engineering ; Tata Steel Netherlands, Ceramic Research Centre, Ijmuiden, Netherlands
Dargaud, Marielle; Saint-Gobain Research Provence, Performance Ceramics and Refractories, Cavaillon, France
Siebring, Rinus; Tata Steel Netherlands, Ceramic Research Centre, Ijmuiden, Netherlands
Léonard, Angélique ; Université de Liège - ULiège > Department of Chemical Engineering > PEPs - Products, Environment, and Processes
Language :
English
Title :
Environmental performance of refractories: A state-of-the-art review on current methodological practices and future directions
An, J., Xue, X., Life-cycle carbon footprint analysis of magnesia products. Resour. Conserv. Recycl. 119 (2017), 4–11, 10.1016/j.resconrec.2016.09.023.
An, J., Li, Y., Middleton, R.S., Reducing energy consumption and carbon emissions of magnesia refractory products: a life-cycle perspective. J. Clean. Prod. 182 (2018), 363–371, 10.1016/j.jclepro.2018.01.266.
Badioli, S., Dargaud, M., Champion, T., Léonard, A., Enhancing data quality for robust life cycle assessment in refractory industry: strategies and implications. ICR Proceedings, 2024, Aachen, Germany, 10–13.
Bamber, N., Turner, I., Arulnathan, V., Li, Y., Zargar Ershadi, S., Smart, A., Pelletier, N., Comparing sources and analysis of uncertainty in consequential and attributional life cycle assessment: review of current practice and recommendations. Int. J. Life Cycle Assess. 25 (2020), 168–180, 10.1007/s11367-019-01663-1.
A. Bhatia, Overview of refractories, CED engineering, n.d. https://www.cedengineering.com/courses/overview-of-refractories.
Biswas, S., Sarkar, D., Introduction to Refractories for Iron- and Steelmaking. 2020, Springer International Publishing, Cham, 10.1007/978-3-030-43807-4.
Boenzi, F., Possible ecological advantages from use of carbonless magnesia refractory bricks in secondary steelmaking: a framework LCA perspective. Int. J. Environ. Sci. Technol. 19 (2022), 5877–5896, 10.1007/s13762-021-03553-2.
Boenzi, F., Ordieres-Meré, J., Iavagnilio, R., Life cycle assessment comparison of two refractory brick product systems for ladle lining in secondary steelmaking. Sustainability, 11, 2019, 1295, 10.3390/su11051295.
Canton, L., Henry-Lanier, E., Touzo, B., Development of a methodology for life cycle assessment of refractories and fluxes used in iron and steel processes. AISTech 2023 Proceedings, AIST, 2023, 2361–2363, 10.33313/387/268.
CEN/TC 350. EN 15804:2012+A2:2019 Sustainability of Construction Works - Environmental Product Declarations - Core Rules for the Product Category of Construction Products. 2019.
Dekker, E., Zijp, M.C., Van De Kamp, M.E., Temme, E.H.M., Van Zelm, R., A taste of the new ReCiPe for life cycle assessment: consequences of the updated impact assessment method on food product LCAs. Int. J. Life Cycle Assess. 25 (2020), 2315–2324, 10.1007/s11367-019-01653-3.
Dong, Y., Hossain, Md.U., Li, H., Liu, P., Developing conversion factors of LCIA methods for comparison of LCA results in the construction sector. Sustainability, 13, 2021, 9016, 10.3390/su13169016.
Eggleston, H.S., IPCC Guidelines for National Greenhouse Gas Inventories. 2006, IGES Institute for Global Environmental Strategies, Japan 2006.
Ekvall, T., Björklund, A., Sandin, G., Jelse, K., Lagergren, J., Rydberg, M., Modeling Recycling in Life Cycle Assessment. 2020 Gothenburg, Sweden.
European Commission. Reference Document on Best Available Techniques in the Ceramic Manufacturing Industry. 2007, European Commission.
European Commission. Joint Research Centre. Institute for Prospective Technological Studies., Best Available Techniques (BAT) Reference Document for the Production of Cement, Lime and Magnesium Oxide: Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control). 2013, Publications Office, LU https://data.europa.eu/doi/10.2788/12850. (Accessed 28 September 2023)
European Commission. Joint research Centre. Global Normalisation Factors for the Environmental Footprint and Life Cycle Assessment, 2017, Publications Office, LU https://data.europa.eu/doi/10.2760/88930. (Accessed 9 October 2024)
European Commission. Commission Recommendation (EU) 2021/2279 on the Use of the Environmental Footprint Methods to Measure and Communicate the Life Cycle Environmental Performance of Products and Organisations. 2021.
European Commission. Directorate-General for Environment, Proposal for a Regulation of the European Parliament and of the Council Establishing a Framework for Setting Ecodesign Requirements for Sustainable Products and Repealing Directive 2009/125/EC. 2022.
European Commission. Joint Research Centre. Institute for Environment and Sustainability. International Reference Life Cycle Data System (ILCD) Handbook: General Guide for Life Cycle Assessment : Detailed Guidance. 2010, Publications Office, LU https://data.europa.eu/doi/10.2788/38479. (Accessed 14 June 2024)
PRE Product Carbon Footprint Report, 2013.
Farjana, S.H., Mahmud, M.A.P., Huda, N., Introduction to life cycle assessment. Life Cycle Assessment for Sustainable Mining, 2021, Elsevier, 1–13, 10.1016/B978-0-323-85451-1.00001-9.
Ferreira, G., López-Sabirón, A.M., Aranda, J., Mainar-Toledo, M.D., Aranda-Usón, A., Environmental analysis for identifying challenges to recover used reinforced refractories in industrial furnaces. J. Clean. Prod. 88 (2015), 242–253, 10.1016/j.jclepro.2014.04.087.
Goedkoop, M., Heijungs, R., Huijbregts, M., De Schryver, A., Struijs, J., van Zelm, R., ReCiPe 2008 - A Life Cycle Impact Assessment Method Which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level - Report I: Characterisation., first ed., 2013, Ministerie van VROM, Den Haag, The Netherlands version 1.08.
Henry-Lanier, E., Szepizdyn, M., Wöhrmeyer, C., Parr, C., Optimisation of the environmental footprint of calcium-aluminate-cement containing castables. Refract. Worldforum 8–2016 (2016), 81–86.
Hischier, R., Life Cycle Inventories of Packaging and Graphical Paper. 2007, Swiss Centre for Life Cycle Inventories, Dübendorf, CH.
Horckmans, L., Nielsen, P., Dierckx, P., Ducastel, A., Recycling of refractory bricks used in basic steelmaking: a review. Resour. Conserv. Recycl. 140 (2019), 297–304, 10.1016/j.resconrec.2018.09.025.
Huijbregts, M.A.J., Steinmann, Z.J.N., Elshout, P.M.F., Stam, G., Verones, F., Vieira, M., Zijp, M., Hollander, A., Van Zelm, R., ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 22 (2017), 138–147, 10.1007/s11367-016-1246-y.
DS/EN ISO 14025:2006: Environmental Labels and Declarations - Type III Environmental Declarations - Principles and Procedures, 2010 Geneva, Switzerland.
ISO 14067 Greenhouse Gases - Carbon Footprint of Products - Requirements and Guidelines for the Quantification and Communication, 2018 Geneva, Switzerland.
I.O. for S. ISO. DS/EN ISO 14044:2006: Environmental Management - Life Cycle Assessment - Requirements and Guidelines. 2006 Geneva, Switzerland.
I.O. for S. ISO. ISO 14040 Environmental Management — Life Cycle Assessment — Principles and Framework. 2006 Geneva, Switzerland.
Jacob-Lopes, E., Zepka, L.Q., Deprá, M.C., Assistant's tools toward life cycle assessment. Sustainability Metrics and Indicators of Environmental Impact, 2021, Elsevier, 77–90, 10.1016/B978-0-12-823411-2.00006-2.
Joos-Bloch, M., Rechberger, L., Haider, C., Moulin-Silva, W., Wucher, J., Drnek, T., Product carbon footprint of refractory products. RHI Bull. J. Refract. Innov., 2023, 39–44.
Kayama, T., Asano, K., Ebisawa, H., Ueno, K., Recent technology of refractory production. Nippon Steel Tech. Rep. 98 (2008), 29–34.
Kellenberger, D., Althaus, H.-J., Jungbluth, N., Künniger, T., Life Cycle Inventories of Building Products. 2007, Swiss Centre for Life Cycle Inventories, Dübendorf, CH.
Klaus, S., Schmidtmeier, D., Chatterjee, S., Dutton, J., Perception and Characteristics of Fused and Sintered Refractory Aggregates. 2017, Aachen, Germany.
Königshofer, S., Developing a model to calculate the carbon footprint of refractory products. Institut für nachhaltige Abfallwirtschaft und Entsorgungstechnik, Montanuniversität Leoben, 2012 https://pure.unileoben.ac.at/en/publications/developing-a-model-to-calculate-the-carbon-footprint-of-refractor.
Kuczenski, B., Marvuglia, A., Astudillo, M.F., Ingwersen, W.W., Satterfield, M.B., Evers, D.P., Koffler, C., Navarrete, T., Amor, B., Laurin, L., LCA capability roadmap—product system model description and revision. Int. J. Life Cycle Assess. 23 (2018), 1685–1692, 10.1007/s11367-018-1446-8.
Lam, K.L., Zlatanović, L., Van Der Hoek, J.P., Life cycle assessment of nutrient recycling from wastewater: a critical review. Water Res., 173, 2020, 115519, 10.1016/j.watres.2020.115519.
Li, J., Zhang, Y., Shao, S., Zhang, S., Comparative life cycle assessment of conventional and new fused magnesia production. J. Clean. Prod. 91 (2015), 170–179, 10.1016/j.jclepro.2014.12.043.
Li, J., Zhang, Y., Shao, S., Zhang, S., Ma, S., Application of cleaner production in a Chinese magnesia refractory material plant. J. Clean. Prod. 113 (2016), 1015–1023, 10.1016/j.jclepro.2015.11.040.
Luong, V.-T., Amal, R., Scott, J.A., Ehrenberger, S., Tran, T., A comparison of carbon footprints of magnesium oxide and magnesium hydroxide produced from conventional processes. J. Clean. Prod. 202 (2018), 1035–1044, 10.1016/j.jclepro.2018.08.225.
Malabi Eberhardt, L.C., Stijn, A.V., Rasmussen, F.N., Birkved, M., Birgisdottir, H., Towards circular life cycle assessment for the built environment: a comparison of allocation approaches. IOP Conf. Ser. Earth Environ. Sci., 588, 2020, 032026, 10.1088/1755-1315/588/3/032026.
Menezes Cunha, J.V., Pirard, E., Drnek, T., Overview on LCA: challenges and opportunities for the refractory industry. European Centre for Refractories gGmbH (ECREF), 2023, 618–621 Frankfurt, Germany.
Motta, W.H., Carbon footprint as a first step towards LCA usage. Klos, Z.S., Kalkowska, J., Kasprzak, J., (eds.) Towards a Sustainable Future - Life Cycle Management, 2022, Springer International Publishing, Cham, 265–275, 10.1007/978-3-030-77127-0_24.
Mottram, R.S., Steele, T., Williamson, A., Amin, B.K., Cantone, R., Insulating refractories as an enabler to carbon sustainability, demonstrated through life cycle assessment. European Centre for Refractories gGmbH (ECREF), 2023, 614–617 Frankfurt, Germany.
Muñoz, I., Life cycle environmental and cost assessment of ladle refractories management according to circular economy criteria. European Centre for Refractories gGmbH (ECREF), 2023, 610–613 Frankfurt, Germany.
Muñoz, I., Soto, A., Maza, D., Bayón, F., Life cycle assessment of refractory waste management in a Spanish steel works. Waste Manag. 111 (2020), 1–9, 10.1016/j.wasman.2020.05.023.
Özkan, A., Günkaya, Z., Tok, G., Karacasulu, L., Metesoy, M., Banar, M., Kara, A., Life cycle assessment and life cycle cost analysis of magnesia spinel brick production. Sustainability, 8, 2016, 662, 10.3390/su8070662.
PAS 2050:2011: Specification for the Assessment of the Life Cycle Greenhouse Gas Emissions of Goods and Services, 2011, BSI, London.
Pollok, L., Spierling, S., Endres, H.-J., Grote, U., Social life cycle assessments: a review on past development, advances and methodological challenges. Sustainability, 13, 2021, 10286, 10.3390/su131810286.
Pradel, M., Aissani, L., Villot, J., Baudez, J.-C., Laforest, V., From waste to added value product: towards a paradigm shift in life cycle assessment applied to wastewater sludge – a review. J. Clean. Prod. 131 (2016), 60–75, 10.1016/j.jclepro.2016.05.076.
Refractory material market - global industry analysis, size, share, growth, trends, regional outlook, and forecast 2023-2032. https://www.precedenceresearch.com/refractory-material-market#:∼:text=The%20global%20refractory%20material%20market,forecast%20period%202023%20to%202032, 2023.
Ragonnaud, G., Green Claims Directive - Protecting Consumers from Greenwashing. 2024, EPRS European Parliamentary Research Service.
Ranaivoharilala, S., Bunt, N., Wöhrmeyer, C., Data-based carbon footprint of Imerys speciality minerals for refractories. European Centre for Refractories gGmbH (ECREF), 2023, 14–17 Frankfurt, Germany.
Ren, W., Xue, B., Lu, C., Zhang, Z., Zhang, Y., Jiang, L., Evaluation of GHG emissions from the production of magnesia refractory raw materials in Dashiqiao, China. J. Clean. Prod. 135 (2016), 214–222, 10.1016/j.jclepro.2016.06.118.
Renou, S., Thomas, J.S., Aoustin, E., Pons, M.N., Influence of impact assessment methods in wastewater treatment LCA. J. Clean. Prod. 16 (2008), 1098–1105, 10.1016/j.jclepro.2007.06.003.
Ribeiro Gomes, M., Leber, T., Tillmann, T., Kenn, D., Gavagnin, D., Tonnesen, T., Gonzalez-Julian, J., Towards H2 implementation in the iron- and steelmaking industry: State of the art, requirements, and challenges for refractory materials. J. Eur. Ceram. Soc. 44 (2024), 1307–1334, 10.1016/j.jeurceramsoc.2023.10.044.
Schnalzger, M., Spanring, A., Kirschen, M., Kollmann, T., Moulin-Silva, W., Wucher, J., Ratz, A., Janssen, T., Kirowitz, J., Electric melting furnaces for green steel transformation of integrated steel plants — requirements, challenges and solutions from a refractory perspective. RHI Magnesita Bulletin - 2023 (2023), 10–17.
Semler, C.E., Overview of refractory problems in industry. InterCeram: Int. Ceram. Rev. 40 (1991), 534–539.
Sena, M., Hicks, A., Life cycle assessment review of struvite precipitation in wastewater treatment. Resour. Conserv. Recycl. 139 (2018), 194–204, 10.1016/j.resconrec.2018.08.009.
Stadler, K., Wood, R., Bulavskaya, T., Södersten, C., Simas, M., Schmidt, S., Usubiaga, A., Acosta‐Fernández, J., Kuenen, J., Bruckner, M., Giljum, S., Lutter, S., Merciai, S., Schmidt, J.H., Theurl, M.C., Plutzar, C., Kastner, T., Eisenmenger, N., Erb, K., De Koning, A., Tukker, A., Exiobase 3: developing a time series of detailed environmentally extended multi‐regional input‐output tables. J. Ind. Ecol. 22 (2018), 502–515, 10.1111/jiec.12715.
Tang, Y., Shi, Y., Li, Y., Yuan, X., Mu, R., Wang, Q., Ma, Q., Hong, J., Cao, S., Zuo, J., Kellett, J., Environmental and economic impact assessment of the alumina–carbon refractory production in China. Clean Technol. Environ. Policy 21 (2019), 1723–1737, 10.1007/s10098-019-01741-w.
Thonemann, N., Schulte, A., Maga, D., How to conduct prospective life cycle assessment for emerging technologies? A systematic review and methodological guidance. Sustainability, 12, 2020, 1192, 10.3390/su12031192.
Trojer, M., Principles of Benchmarking Criteria for the European Magnesia Industry, Master of Science Thesis., 2009, University of Leoben, Austria.
Vert, T., New Ways to Destroy Refractories - the Future of Green Steelmaking. 2023, European Centre for Refractories gGmbH (ECREF), Frankfurt, Germany, 307–310.
Wang, S., Wang, W., Yang, H., Comparison of product carbon footprint protocols: case study on medium-density fiberboard in China. IJERPH, 15, 2018, 2060, 10.3390/ijerph15102060.
Weidema, B.P., Thrane, M., Christensen, P., Schmidt, J., Løkke, S., Carbon footprint: a catalyst for life cycle assessment?. J. Ind. Ecol. 12 (2008), 3–6, 10.1111/j.1530-9290.2008.00005.x.
Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., Weidema, B., The ecoinvent database version 3 (part I): overview and methodology. Int. J. Life Cycle Assess. 21 (2016), 1218–1230, 10.1007/s11367-016-1087-8.
WRA, About refractories. World refractories association. https://www.worldrefractories.org/about-refractories, 2023.
WRI, WBCSD. Greenhouse Gas Protocol: Product Life Cycle Accounting and Reporting Standard. 2011, World Resources Institute; World Business Council for Sustainable Development, Washington, DC.
Zhao, L., Feng, J., Dong, H., Analysis of carbon footprint and reduction approach of magnesia production in China. J. Clean. Prod., 334, 2022, 130194, 10.1016/j.jclepro.2021.130194.