[en] With the changing climate, soil waterlogging is a growing threat to food security. Yet, contemporary approaches employed in crop models to simulate waterlogging are in their infancy. By analysing 21 crop models, we show that critical deficiencies persist in accurately simulating capillary rise, crop resistance to transient periods of waterlogging, crop recovery mechanisms, and the effects on soil nitrogen processes, phenology and yield components. This hinders the ability of such models to reliably simulate the impacts of excessive soil moisture. Advanced crop modelling analytics will enable scenario analysis and, with time, farming systems adaptation to climate change and increasing frequency of crop failure due to waterlogging.
Disciplines :
Agriculture & agronomy
Author, co-author :
Garcia-Vila, Margarita ; Instituto de Agricultura Sostenible, CSIC, Córdoba, Spain. mgarcia-vila@ias.csic.es
Dos Santos Vianna, Murilo ; Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, Germany ; University of Bonn, Bonn, Germany
Harrison, Matthew Tom ; Tasmanian Institute of Agriculture, University of Tasmania, Launceston, Tasmania, Australia
Liu, Ke ; Tasmanian Institute of Agriculture, University of Tasmania, Launceston, Tasmania, Australia ; Yangtze University, Jingzhou, China
de S Nóia-Júnior, Rogério; LEPSE, Université de Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
Weber, Tobias K D ; University of Kassel, Kassel, Germany
Zhao, Jin; China Agricultural University, Beijing, China
Acutis, Marco ; University of Milan, Milan, Italy
Archontoulis, Sotirios ; Iowa State University, Ames, IA, USA
Asseng, Senthold ; Department of Life Science Engineering, Digital Agriculture, HEF World Agricultural Systems Center, Technical University of Munich, Munich, Germany
Aubry, Pierre ; Université de Liège - ULiège > TERRA Research Centre
Balkovic, Juraj ; International Institute for Applied Systems Analysis, Laxenburg, Austria
Basso, Bruno ; Michigan State University, East Lansing, MI, USA
Chen, Xianguan; Fujian Agriculture and Forestry University, Fuzhou, China
Chen, Yi; Chinese Academy of Sciences, Beijing, China
de Jong van Lier, Quirijn; University of São Paulo, Piracicaba, Brazil
Delandmeter, Mathieu ; Université de Liège - ULiège > Département GxABT > Plant Sciences
de Wit, Allard; Wageningen University and Research, Wageningen, the Netherlands
Dumont, Benjamin ; Université de Liège - ULiège > TERRA Research Centre > Plant Sciences
Ferrise, Roberto ; University of Florence, Florence, Italy
Folberth, Christian ; International Institute for Applied Systems Analysis, Laxenburg, Austria
Gabbrielli, Mara ; University of Milan, Milan, Italy
Gaiser, Thomas ; University of Bonn, Bonn, Germany
Gorooei, Aram; University of Bonn, Bonn, Germany
Hoogenboom, Gerrit ; University of Florida, Gainesville, FL, USA
Kersebaum, Kurt Christian ; Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany ; Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
Kim, Yean-Uk ; Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
Liu, Bing ; National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
Metselaar, Klaas; Wageningen University and Research, Wageningen, the Netherlands
Nendel, Claas ; Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany ; Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic ; Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
Padovan, Gloria; University of Florence, Florence, Italy
Perego, Alessia; University of Milan, Milan, Italy
Seserman, Diana Maria; Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
Shelia, Vakhtang; University of Florida, Gainesville, FL, USA
Stocca, Valentina; Department of Life Science Engineering, Digital Agriculture, HEF World Agricultural Systems Center, Technical University of Munich, Munich, Germany
Tao, Fulu ; Chinese Academy of Sciences, Beijing, China
Wang, Enli ; CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
Webber, Heidi ; Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
Zhao, Zhigan; CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
Zhu, Yan; National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
Palosuo, Taru ; Natural Resources Institute Finland (Luke), Helsinki, Finland
M.G.-V. acknowledges funding from Consejer\u00EDa de Universidad, Investigaci\u00F3n e Innovaci\u00F3n\u2014Junta de Andalucia through the Qualifica Project (QUAL21_023 IAS), and from WheatNet (\u2018Conexi\u00F3n TRIGO\u2019) of the Spanish National Research Council (CSIC). The contribution of T.K.D.W. was made possible by the joint project of Digitalization in Organic Agriculture (DigiPlus, grant number 28 DE 207A 21), funded by the German Federal Office of Agriculture and Food. M.T.H. and K.L. were in part supported by funding from the Australian Grains Research & Development Corporation (GRDC contract code UOT1906-002RTX). T.G. acknowledges partial funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany\u2019s Excellence Strategy \u2013 EXC 2070 \u2013 390732324 and under the Collaborative Research Centre DETECT (grant number SFB1502/1\u20132022 -450058266).
R. de S. Nóia Júnior et al. A call to action for global research on the implications of waterlogging for wheat growth and yield Agric. Water Manage. 284 108334
K. Liu et al. Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates Nat. Commun. 14 2023NatCo.14.765L 1:CAS:528:DC%2BB3sXjtlGrsrg%3D 36765112 9918449 765
S. Kuppel J. Houspanossian M.D. Nosetto E.G. Jobbágy What does it take to flood the Pampas? Lessons from a decade of strong hydrological fluctuations Water Resour. Res. 51 2937 2950 2015WRR..51.2937K
Status of the World’s Soil Resources: Main Report (FAO, 2015).
M.S. Alam N. Sasaki A. Datta Waterlogging, crop damage and adaptation interventions in the coastal region of Bangladesh: a perception analysis of local people Environ. Dev. 23 22 32
J. Houspanossian et al. Agricultural expansion raises groundwater and increases flooding in the South American plains Science 380 1344 1348 2023Sci..380.1344H 1:CAS:528:DC%2BB3sXhtlCks7fL 37384703
J. Pang M. Zhou N. Mendham S. Shabala Growth and physiological responses of six barley genotypes to waterlogging and subsequent recovery Aust. J. Agric. Res. 55 895 906
M. Zampieri A. Ceglar F. Dentener A. Toreti Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales Environ. Res. Lett. 12 064008 2017ERL..12f4008Z
A. Lawal H. Kerner I. Becker-Reshef S. Meyer Mapping the location and extent of 2019 prevent planting acres in South Dakota using remote sensing techniques Remote Sens. 13 2430 2021RemS..13.2430L
R. de S. Nóia Júnior et al. The extreme 2016 wheat yield failure in France Glob. Change Biol. 29 3130 3146
IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2023).
M.G. Donat A.L. Lowry L.V. Alexander P.A. O’Gorman N. Maher More extreme precipitation in the world’s dry and wet regions Nat. Clim. Change 6 508 513 2016NatCC..6.508D
A. Singh Soil salinization and waterlogging: a threat to environment and agricultural sustainability Ecol. Indic. 57 128 130
E. Guo J. Zhang Y. Wang H. Si F. Zhang Dynamic risk assessment of waterlogging disaster for maize based on CERES-Maize model in midwest of Jilin Province, China Nat. Hazards 83 1747 1761
J. Zhang B. Pan W. Shi Y. Zhang Monitoring waterlogging damage of winter wheat based on HYDRUS-1D and WOFOST coupled model and assimilated soil moisture data of remote sensing Remote Sens. 15 4133 2023RemS..15.4133Z
S. Bassu S. Asseng R. Motzo F. Giunta Optimising sowing date of durum wheat in a variable Mediterranean environment Field Crops Res. 111 109 118
C.D. Sprunger A. Lindsey A. Lightcap Above- and belowground linkages during extreme moisture excess: leveraging knowledge from natural ecosystems to better understand implications for row-crop agroecosystems J. Exp. Bot. 74 2845 2859 1:CAS:528:DC%2BB3sXhvVSlsLjK 36738284 10133998
S.M.N. Manik et al. Soil and crop management practices to minimize the impact of waterlogging on crop productivity Front. Plant Sci. 10 140 30809241 6379354
P. Langan et al. Phenotyping for waterlogging tolerance in crops: current trends and future prospects J. Exp. Bot. 73 5149 5169 1:CAS:528:DC%2BB3sXhtlCjs74%3D 35642593 9440438
G. Kaur et al. Impacts and management strategies for crop production in waterlogged or flooded soils: a review Agron. J. 112 1475 1501
L.-X. Tian et al. How does the waterlogging regime affect crop yield? A global meta-analysis Front. Plant Sci. 12 634898 33679848 7933672
C. Tong et al. Opportunities for improving waterlogging tolerance in cereal crops—physiological traits and genetic mechanisms Plants 10 1560 1:CAS:528:DC%2BB3MXivVWkt7zF 34451605 8401455
K.J. Boote J.W. Jones J.W. White S. Asseng J.I. Lizaso Putting mechanisms into crop production models Plant Cell Environ. 36 1658 1672 1:CAS:528:DC%2BC3sXht1Cht7bL 23600481
R.E. Shaw W.S. Meyer Improved empirical representation of plant responses to waterlogging for simulating crop yield Agron. J. 107 1711 1723 1:CAS:528:DC%2BC28Xlt1Wkur0%3D
K. Liu et al. Climate change shifts forward flowering and reduces crop waterlogging stress Environ. Res. Lett. 16 094017 2021ERL..16i4017L
H.R. Pasley I. Huber M.J. Castellano S.V. Archontoulis Modeling flood-induced stress in soybeans Front. Plant Sci. 11 62 32117398 7028700
S. Beegum et al. Developing functional relationships between waterlogging and cotton growth and physiology—towards waterlogging modeling Front. Plant Sci. 14 1174682 37583596 10425224
X. Jin Y. Jin J. Zhai D. Fu X. Mao Identification and prediction of crop waterlogging risk areas under the impact of climate change Water 14 1956
K. Liu et al. The state of the art in modeling waterlogging impacts on plants: what do we know and what do we need to know Earths Future 8 e2020EF001801 2020EaFut..801801L
C. Rosenzweig et al. The Agricultural Model Intercomparison and Improvement Project (AgMIP): protocols and pilot studies Agric. For. Meteorol. 170 166 182 2013AgFM.170.166R
F. Githui et al. Modelling waterlogging impacts on crop growth: a review of aeration stress definition in crop models and sensitivity analysis of APSIM Int. J. Plant Biol. 13 180 200
R.E. Shaw W.S. Meyer A. McNeill S.D. Tyerman Waterlogging in Australian agricultural landscapes: a review of plant responses and crop models Crop Pasture Sci. 64 549 562
Y.-U. Kim et al. Mechanisms and modelling approaches for excessive rainfall stress on cereals: waterlogging, submergence, lodging, pests and diseases Agric. For. Meteorol. 344 109819
Dang, Y, Menzies, N. & Dalal, R. Soil Constraints on Crop Production (Cambridge Scholars, 2022).
Y. Fan H. Li G. Miguez-Macho Global patterns of groundwater table depth Science 339 940 943 2013Sci..339.940F 1:CAS:528:DC%2BC3sXis1OisLc%3D 23430651
Kersebaum, K. C. in Methods of Introducing System Models into Agricultural Research (eds Ahuja, L. R. & Ma, L.) 65–94 (American Society of Agronomy and Soil Science Society of America, 2015).
A. Soltani V. Maddah T.R. Sinclair SSM-Wheat: a simulation model for wheat development, growth and yield Int. J. Plant Prod. 7 711 740
Feng, L. Study on Simulation Model of Wheat Growth and Development (Nanjing Agricultural Univ., 1995).
R. Yang et al. Implications of soil waterlogging for crop quality: a meta-analysis Eur. J. Agron. 161 127395 1:CAS:528:DC%2BB2cXitlejsbnM
R. Gebbers V.I. Adamchuk Precision agriculture and food security Science 327 828 831 2010Sci..327.828G 1:CAS:528:DC%2BC3cXhslWjur0%3D 20150492
de Souza Nóia Júnior, R. Understanding Extreme Wheat Production Failures Through Modeling (Technische Univ. München, 2023).
E. Ebrahimi-Mollabashi et al. Enhancing APSIM to simulate excessive moisture effects on root growth Field Crops Res. 236 58 67
A. de Wit et al. 25 years of the WOFOST cropping systems model Agric. Syst. 168 154 167
L. Qian et al. An improved CROPR model for estimating cotton yield under soil aeration stress Crop Pasture Sci. 68 366 377
I.P. Pais et al. Wheat crop under waterlogging: potential soil and plant effects Plants 12 149 36616278 9823972
Z. Zhang A. Furman Soil redox dynamics under dynamic hydrologic regimes—a review Sci. Total Environ. 763 143026 1:CAS:528:DC%2BB3cXit1ektL%2FK 33143917
L.T.T. Nguyen et al. Impacts of waterlogging on soil nitrification and ammonia-oxidizing communities in farming system Plant Soil 426 299 311 1:CAS:528:DC%2BC1cXlvVyjtrk%3D
E. Haas et al. LandscapeDNDC: a process model for simulation of biosphere–atmosphere–hydrosphere exchange processes at site and regional scale Landsc. Ecol. 28 615 636
Basso, B. & Ritchie, J. T. in The Ecology of Agricultural Landscapes: Long-Term Research on the Path to Sustainability (Hamilton, S. K. et al.) 252–274 (Oxford Univ. Press, 2015).
Hoogenboom, G. et al. in Advances in Crop Modelling for a Sustainable Agriculture (ed. Boote, K.) 173–216 (Burleigh Dodds Science, 2019).
Raes, D, Steduto, P, Hsiao, T. C. & Fereres, E. in AquaCrop Version 7.1: Reference Manual (Raes, D. et al.) 1–167 (FAO, 2023).
Kroes, J. G. et al. SWAP Version 4 (Wageningen Environmental Research, 2017); https://doi.org/10.18174/416321
E. Valkama et al. Can conservation agriculture increase soil carbon sequestration? A modelling approach Geoderma 369 2020Geode.369k4298V 1:CAS:528:DC%2BB3cXmsl2ltr8%3D 114298
J. Ramirez-Villegas et al. CGIAR modeling approaches for resource‐constrained scenarios: I. Accelerating crop breeding for a changing climate Crop Sci. 60 547 567
N. Jarvis M. Larsbo E. Lewan S. Garré Improved descriptions of soil hydrology in crop models: the elephant in the room? Agric. Syst. 202 103477
M. Hartmann J. Six Soil structure and microbiome functions in agroecosystems Nat. Rev. Earth Environ. 4 4 18 2023NRvEE..4..4H
A. Velmurugan T.P. Swarnam S.K. Ambast N. Kumar Managing waterlogging and soil salinity with a permanent raised bed and furrow system in coastal lowlands of humid tropics Agric. Water Manage 168 56 67
T.L. Nordblom T.R. Hutchings S.S. Godfrey C.R. Schefe Precision variable rate nitrogen for dryland farming on waterlogging Riverine Plains of southeast Australia? Agric. Syst. 186 102962
B. Maestrini B. Basso Drivers of within-field spatial and temporal variability of crop yield across the US Midwest Sci. Rep. 8 2018NatSR..814833M 30287846 6172268 14833
Y. Ganot H.E. Dahlke A model for estimating Ag-MAR flooding duration based on crop tolerance, root depth, and soil texture data Agric. Water Manage 255 107031
T.K.D. Weber et al. Hydro-pedotransfer functions: a roadmap for future development Hydrol. Earth Syst. Sci. 28 3391 3433 1:CAS:528:DC%2BB2MXhtFaqtbvO
B.S. Naz W. Sharples Y. Ma K. Goergen S. Kollet Continental-scale evaluation of a fully distributed coupled land surface and groundwater model, ParFlow-CLM (v3.6.0), over Europe Geosci. Model Dev. 16 1617 1639 2023GMD..16.1617N
S.M. Siad et al. A review of coupled hydrologic and crop growth models Agric. Water Manage. 224 105746
M. Shahhosseini G. Hu I. Huber S.V. Archontoulis Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt Sci. Rep. 11 2021NatSR.11.1606S 1:CAS:528:DC%2BB3MXhsFKrs74%3D 33452349 7810832 1606
L. Li et al. Knowledge-guided machine learning for improving crop yield projections of waterlogging effects under climate change Resour. Environ. Sustain. 19 100185
H.E. Brown et al. Plant Modelling Framework: software for building and running crop models on the APSIM platform Environ. Model. Softw. 62 385 398
J.R. Williams The Erosion-Productivity Impact Calculator (EPIC) model: a case history Phil. Trans. R. Soc. B 329 421 428 1990RSPTB.329.421W
R.C. Izaurralde J.R. Williams W.B. McGill N.J. Rosenberg M.C.Q. Jakas Simulating soil C dynamics with EPIC: model description and testing against long-term data Ecol. Model. 192 362 384
F. Tao M. Yokozawa Z. Zhang Modelling the impacts of weather and climate variability on crop productivity over a large area: a new process-based model development, optimization, and uncertainties analysis Agric. For. Meteorol. 149 831 850 2009AgFM.149.831T
F. Tao Z. Zhang Climate change, wheat productivity and water use in the North China Plain: a new super-ensemble-based probabilistic projection Agric. For. Meteorol. 170 146 165 2013AgFM.170.146T
C. Nendel et al. The MONICA model: testing predictability for crop growth, soil moisture and nitrogen dynamics Ecol. Model. 222 1614 1625 1:CAS:528:DC%2BC3MXksFygtrk%3D
A. Enders et al. SIMPLACE—a versatile modelling and simulation framework for sustainable crops and agroecosystems In Silico Plants 5 diad006
STICS Soil–Crop Model—Conceptual Framework, Equations and Uses (Quae, 2023).
Y. Zhu et al. Research progress on the crop growth model CropGrow Sci. Agric. Sin. 53 3235 3256
X. Chen et al. WheatSM V5.0: a Python-based wheat growth and development simulation model with cloud services integration for enhancing agricultural applications Agronomy 13 2411 1:CAS:528:DC%2BB3sXitVKrtrzF