[en] This paper reports detailed studies on the internal energy of ions formed in matrix-assisted laser desorption/ionization (MALDI) using delayed extraction MALDI-time-of-flight (TOF) and atmospheric pressure (AP) MALDI mass spectrometric (MS) methods. We use benzylpyridinium cations as internal energy probes. Our study reveals three distinct contributions to internal energy build-up in vacuum-MALDI (classical MALDI-TOF), each having different effects on ion fragmentation. Some fragments are formed before ion extraction (i.e. no more than 100 ns after the laser impact), and they are therefore well resolved and recorded as sharp signals in the MALDI-TOFMS scan. This prompt fragmentation can have two origins: (i) in-plume thermal activation, presumably always present, and (ii) in-plume chemical activation, in the course of reactions with hydrogen radicals. In addition to early internal energy build-up associated with these well-resolved promptly formed fragments, a broad peak slightly offset to higher masses could be detected corresponding to fragments formed after the extraction has started. This second signal corresponds to a third source of internal energy in MALDI ions, (iii) the extraction-induced collisional activation of the ions with the neutral components of the plume. These three contributions are difficult to quantify in vacuum-MALDI, because of the combined influence of several parameters (nature of the matrix, spot-to-spot variability, total laser exposure, delay time, acceleration voltage) on extraction-induced fragmentation. AP-MALDI, on the other hand, has two advantages for comparative studies of analyte fragmentation. First, extraction-induced fragmentation is absent, and only the contributions of early plume activation remain. Second, the reproducibility is far better than in vacuum-MALDI. AP-MALDI is therefore expected to shed new light on the early steps of the MALDI process. Copyright (C) 2004 John Wiley Sons, Ltd.
Dreisewerd K. The desorption process in MALDI. Chem. Rev. 2003; 103: 395.
Karas M, Krüger R. Ion formation in MALDI: the cluster ionization mechanism. Chem. Rev. 2003; 103: 427.
Knochenmuss R, Zenobi R. MALDI ionization: the role of in-plume processes. Chem. Rev. 2003; 103: 441.
Zhigilei LV, Leveugle E, Garrison BJ, Yingling YG, Zeifman MI. Computer simulations of laser ablation of molecular solids. Chem. Rev. 2003; 103: 321.
Karas M, Bachmann D, Bahr U, Hillenkamp F. Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int. J. Mass Spectrom. Ion. Processes 1987; 78: 53.
Karas M, Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10 000 Daltons. Anal. Chem. 1988; 60: 2299.
Karas M, Bahr U, Giebmann U. Matrix-assisted laser desorption mass spectrometry. Mass Spectrom. Rev. 1991; 10: 335.
Hillenkamp F, Karas M, Beavis RC, Chait BT. Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal. Chem. 1991; 63: 1193A.
Zhu L, Parr GR, Fitzgerald MC, Nelson CM, Smith LM. Oligodeoxynucleotide fragmentation in MALDI/TOF mass spectrometry using 355-nm radiation. J. Am. Chem. Soc. 1995; 117: 6048.
Simmons TA, Limbach PA. Influence of co-matrix proton affinity on oligonucleotide ion stability in MALDI TOF MS. J. Am. Soc. Mass Spectrom. 1998; 9: 668.
Gross J, Leisner A, Hillenkamp F, Hahner S, Karas M, Schäfer J, Lützenkirchen F, Nordhoff E. Investigations of the metastable decay of DNA under UV-MALDI conditions with postsource decay analysis and H/D exchange. J. Am. Soc. Mass Spectrom. 1998; 9: 866.
Gross J, Hillenkamp F, Wan KX, Gross ML. Metastable decay of negatively charged oligodeoxynucleotides analyzed with ultraviolet matrix-assisted laser desorption/ionization postsource decay and deuterium exchange. J. Am. Soc. Mass Spectrom. 2001; 12: 180.
Schnölzer M, Lehmann WD. Identification of modified peptides by metastable fragmentation in MALDI mass spectrometry. Int. J. Mass Spectrom. Ion. Processes 1997; 169/170: 263.
Annan RS, Carr SA. Phosphopeptide analysis my matrix-assisted laser desorption time-of-flight mass spectrometry. Anal. Chem. 1996; 68: 3413.
Karas M, Bahr U, Strupat K, Hillenkamp F, Tsarbopopoulos A, Paamanik BN. Matrix dependance of metastable fragmentation of glycoproteins in MALDI TOF mass spectrometry. Anal. Chem. 1995; 67: 675.
Karas M, Bahr U, Stahl-Zheng J-R. Steps towards a more refined picture of the matrix function in UV MALDI. In Large Ions: their Vaporization, Detection and Structural Analysis, Baer T, Ng CY, Powis I (eds). Wiley: New York, 1996; 27.
Spengler B, Kirsch D, Kaufmann R. Metastable decay of peptides and proteins in matrix-assisted laser-desorption mass spectrometry. Rapid Commun. Mass Spectrom. 1991; 5: 198.
Spengler B, Kirsch D, Kaufmann R. Fundamental aspects of postsource decay in MALDI mass spectrometry. J. Phys. Chem. 1992; 96: 9678.
Spengler B. Postsource decay analysis in matrix-assisted laser desorption/ionization mass spectrometry of biomolecules. J. Mass Spectrom. 1997; 32: 1019.
Szilagi Z, Varney JE, Derrick PJ. Dependance of MALDI-PSD spectra on laser power. Rapid Commun. Mass Spectrom. 1998; 12: 489.
Bökelmann V, Spengler B, Kaufmann R. Dynamical parameters of ion ejection and ion formation in MALDI. Eur. Mass Spectrom. 1995; 1: 81.
Patterson SD, Katta V. Prompt fragmentation of disulfide-linked peptides during matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 1994; 66: 3727.
Brown RS, Lennon JL. Sequence-specific fragmentation of matrix-assisted laser-desorbed protein/peptide ions. Anal. Chem. 1995; 67: 3990.
Brown RS, Carr BL, Lennon JL. Factors that influence the observed fast fragmentation of peptides in matrix-assisted laser desorption. J. Am. Soc. Mass Spectrom. 1996; 7: 225.
Brown RS, Feng J, Reiber DC. Further studies of in-source fragmentation of peptides in MALDI. Int. J. Mass Spectrom. Ion. Processes 1997; 169/170: 1.
Katta V, Chow DT, Rohde MF. Applications of in-source fragmentation of protein ions for direct sequence analysis by delayed extraction MALDI-TOF mass spectrometry. Anal. Chem. 1998; 70: 4410.
Reiber DC, Grover TA, Brown RS. Identifying proteins using MALDI in-source fragmentation data combined with database searching. Anal. Chem. 1998; 70: 673.
Reiber DC, Brown RS, Weinberger S, Kenny J, Bailey J. Unknown peptide sequencing using MALDI and in-source decay. Anal. Chem. 1998; 70: 1214.
Takayama M, Tsugita A. Sequence information of peptides and proteins with in-source decay in matrix assisted laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis 2000; 21: 1670.
Takayama M. N - Cα bond cleavage of the peptide backbone via hydrogen abstraction. J. Am. Soc. Mass Spectrom. 2001; 12: 1044.
Takayama M. In-source decay characteristics of peptides in MALDI TOF mass spectrometry. J. Am. Soc. Mass Spectrom. 2001; 12: 420.
Koomen JM, Russell D. Ultraviolet/matrix-assisted laser desorption/ionization mass spectrometric characterization of 2,5-dihydroxybenzoic acid-induced reductive hydrogenation of oligonucleotides on cytosine residues. J. Mass Spectrom. 2000; 35: 1025.
Zubarev RA, Haselmann KF, Budnik BA, Kjeldsen F, Jensen F. Towards an understanding of the mechanism of electron-capture dissociation: a historical perspective and modern ideas. Eur. Mass Spectrom. 2003; 9: 139.
Scott CTJ, Kosmidis C, Jia WJ, Ledingham KWD, Singhal RP. Formation of atomic hydrogen in matrix-assisted laser desorption ionisation. Rapid Commun. Mass Spectrom. 1994; 8: 829.
Huth-Fehre T, Becker CH. Energetics of gramicidin S after UV laser desorption from a ferulic acid matrix. Rapid Commun. Mass Spectrom. 1991; 5: 378.
Mowry CD, Johnston MV. Internal energy of neutral molecules ejected by matrix-assisted laser desorption. J. Phys. Chem. 1994; 98: 1904.
Stevenson E, Breuker K, Zenobi R. Internal energies of analyte ions generated from different MALDI matrices. J. Mass Spectrom. 2000; 35: 1035.
Luo G, Marginean I, Vertes A. Internal energy of ions generated by matrix-assisted laser desorption/ionization. Anal. Chem. 2002; 74: 6185.
Collette C, De Pauw E. Calibration of the internal energy distribution of ions produced by electrospray. Rapid Commun. Mass Spectrom. 1998; 12: 165.
Collette C, Drahos L, De Pauw E, Vékey K. Comparison of the internal energy distributions of ions produced by different electrospray sources. Rapid Commun. Mass Spectrom. 1998; 12: 1673.
Drahos L, Heeren RMA, Collette C, De Pauw E, Vékey K. Thermal energy distributions observed in electrospray ionization. J. Mass Spectrom. 1999; 34: 1373.
Greisch J-F, Gabelica V, Remacle F, De Pauw E. Thermometer ions for matrix-enhanced laser desorption/ionization internal energy calibration. Rapid Commun. Mass Spectrom. 2003; 17: 1847.
Vertes A, Levine RD. Sublimation vs fragmentation in matrix-assisted laser desorption. Chem. Phys. Lett. 1990; 171: 284.
Vertes A, Gijbels R, Levine RD. Homogeneous bottleneck model of matrix-assisted ultraviolet laser desorption of large molecules. Rapid Commun. Mass Spectrom. 1990; 4: 228.
Vertes A, Irinyi G, Gijbels R. Hydrodynamic model of matrix-assisted laser desorption mass spectrometry. Anal. Chem. 1993; 65: 2389.
Glückmann M, Karas M. The initial velocity and its dependence on matrix, analyte and preparation method in ultraviolet matrix-assisted laser desorption/ionization. J. Mass Spectrom. 1999; 34: 467.
Dreisewerd K, Schürenberg M, Karas M, Hillenkamp F. Influence of laser intensity and spot size on the desorption of molecules and ions in MALDI with a uniform beam profile. Int. J. Mass Spectrom. Ion. Processes 1995; 141: 127.
Knochenmuss R. A quantitative model of ultraviolet matrix-assisted laser desorption/ionization. J. Mass Spectrom. 2002; 37: 867.
Bencsura A, Navale V, Sadeghi M, Vertes A. Matrix-guest energy transfer in MALDI. Rapid Commun. Mass Spectrom. 1997; 11: 679.
Zeifman MI, Garrison BJ, Zhigilei LV. Combined molecular dynamics-direct simulation Monte Carlo computational study of laser ablation plume evolution. J. Appl. Phys. 2002; 92: 2181.
Zhigilei LV. Dynamics of the plume formation and parameters of the ejected clusters in short-pulse laser ablation. Appl. Phys. A 2003; 76: 339.
De Pauw E, Pelzer G, Marien J, Natalis P. Internal energy distribution of ions emitted in secondary ion mass spectrometry. Org. Mass Spectrom. 1990; 25: 103.
Derwa F, De Pauw E, Natalis P. New basis for a method for the estimation of secondary ion internal energy distribution in " soft" ionisation techniques. Org. Mass Spectrom. 1991; 26: 117.
Scott AP, Radom L. Harmonic vibrational frequencies: an evaluation of Hartree-Fock, Moller-Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J. Phys. Chem. 1996; 100: 16 502.
Dunbar RC. New approaches to ion thermochemistry via dissociation and association. Adv. Gas Phase Ion Chem. 1996; 2: 87.
Speir JP, Amster IJ. An investigation of the energetics of peptide ion dissociation by laser desorption chemical ionization fourier transform mass spectrometry. J. Am. Soc. Mass Spectrom. 1995; 6: 1069.
Kinsel GR, Edmondson RD, Russell DH. Profile and flight time analysis of bovine insulin clusters as a probe of MALDI ion formation dynamics. J. Mass Spectrom. 1997; 32: 714.
Meroueh SO, Wang YF, Hase WL. Direct dynamics Simulations of collision- and surface-induced dissociation of N-protonated glycine. Shattering fragmentation. J. Phys. Chem. A 2002; 106: 9983.
Laskin J, Bailey TH, Futrell JH. Shattering of peptide ions on self-assembles monolayer surfaces. J. Am. Chem. Soc. 2003; 125: 1625.
Vékey K. Internal energy effects in mass spectrometry. J. Mass Spectrom. 1996; 31: 445.
Drahos L, Vékey K. How closely related are the effective and the real temperature. J. Mass Spectrom. 1999; 34: 79.