[en] Abstract
Ostraciid boxfishes comprise two subfamilies: the Atlantic Lactophrysinae and the Pacific Ostraciinae. Although all species are reported to produce sounds, key acoustic and anatomical data remain missing, particularly for Atlantic taxa. This study compares the sound-producing mechanisms in both subfamilies and examines the anatomy of a representative from the sister family Aracanidae to infer the evolutionary history of acoustic communication. Atlantic species possess a novel structure, the sphaera sonica, composed of paired globular connective masses surrounded by fast-contracting sonic muscles with multidirectional fibres. Muscle contraction displaces these masses against the swim bladder fenestra, generating sound. In contrast, Pacific species lack this mass; their sonic muscles are divided into distinct extrinsic and intrinsic layers positioned around the fenestra. Aracanidae show no sonic system, but anterior body muscles might be homologous to those found in boxfishes. These observations suggest that the Lactophrysinae system represents a more ancestral configuration. The transition to the Ostraciinae condition involves reduction of the globular mass and increased muscular differentiation, probably enhancing control over bladder deformation and enabling more complex acoustic signalling. This study highlights how anatomical innovations in muscle arrangement have contributed to the diversification of acoustic mechanisms within the Ostraciidae.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège AFFISH-RC - Applied and Fundamental FISH Research Center - ULiège
Disciplines :
Zoology
Author, co-author :
Parmentier, Eric ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Morphologie fonctionnelle et évolutive
Eche, Louise ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Morphologie fonctionnelle et évolutive
Greeven, Céline; Laboratory of Functional and Evolutionary Morphology, Freshwater and Oceanic Science Unit of Research, University of Liège , Liège 4000,
Banse, Marine ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Morphologie fonctionnelle et évolutive
Bertucci, Frédéric ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Morphologie fonctionnelle et évolutive ; UMR MARBEC, University of Montpellier, CNRS, IFREMER, IRD , Sète 34200,
Thiry, Marc ; Université de Liège - ULiège > Département des sciences de la vie > Service collectif des enseignements de biologie en bachelier
Raick, Xavier ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Morphologie fonctionnelle et évolutive ; K. Lisa Yang Center for Conservation Bioacoustics, Cornell University , Ithaca, NY 14850,
Donaldson, Terry J; University of Guam Marine Laboratory/Guam, EPSCoR, UOG Station , Mangilao, Guam 96921,
Abramoff MD, Magalhaes PJ, Ram SJ. Image processing with ImageJ. Biophotonics International 2014;11:36–42.
Akamatsu T, Okumura T, Novarini N et al. Empirical refinements applicable to the recording of fish sounds in small tanks. The Journal of the Acoustical Society of America 2002;112:3073–82.
Alfaro ME, Santini F, Brock CD. Do reefs drive diversification in marine teleosts? Evidence from the pufferfish and their allies (order Tetraodontiformes). Evolution; International Journal of Organic Evolution 2007;61:2104–26.
Banse M, Chagnaud BP, Huby A et al. Sound production in piranhas is associated with modifications of the spinal locomotor pattern. Journal of Experimental Biology 2021;224:jeb242336.
Banse M, Lecchini D, Bertucci F et al. Reliable characterization of sound features in fishes begins in open-water environments. The Journal of the Acoustical Society of America 2023;154:270–8.
Banse M, Bertimes E, Lecchini D et al. Sounds as taxonomic indicators in Holocentrid fishes. npj Biodiversity 2024;3:33.
Bartol IK, Gharib M, Webb PW et al. Body-induced vortical flows: a common mechanism for self-corrective trimming control in boxfishes. The Journal of Experimental Biology 2005;208:327–44.
Boyle KS, Colleye O, Parmentier E. Sound production to electric discharge: sonic muscle evolution in progress in Synodontis spp. catfishes (Mochokidae). Proceedings of the Royal Society B: Biological Sciences 2014;281:1197.
Bridge TW. Fishes. In: Harmer SF, Shipley AE (eds.), The Cambridge Natural History. London: Macmillan and Co., 1904, 139–727.
Fine ML. Swimbladder sound production: the forced response versus the resonant bubble. Bioacoustics 2012;21:5–7.
Fine ML, Parmentier E. Mechanisms of sound production. In: Ladich F (ed.), Sound Communication in Fishes. Wien: Springer, 2015, 77–126.
Fine ML, Parmentier E. Fish sound production: the swim bladder. Acoustics Today 2022;18:13–21.
Fine ML, Malloy KL, King C et al. Movement and sound generation by the toadfish swimbladder. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology 2001;187:371–9.
Fish MP. Sonic Fishes of the Pacific (Technical Report n°2). Woods Hole, MA: Woods Hole Oceanographic Institution, 1948.
Fish MP, Mowbray HM. Sounds of Western North Atlantic Fishes. Baltimore: The Johns Hopkins Press, 1970.
Gelse K, Pöschl E, Aigner T. Collagens—structure, function, and biosynthesis. Advanced Drug Delivery Reviews 2003;55:1531–46.
Hove JR, O’Bryan LM, Gordon MS et al. Boxfishes (Teleostei: Ostraciidae) as a model system for fishes swimming with many fins: kinematics. The Journal of Experimental Biology 2001;204:1459–71.
Klassen GJ. Phylogeny and biogeography of the Ostraciinae (Tetraodontiformes: Ostraciidae). Bulletin of Marine Science 1995;57:393–441.
Lindstedt SL, McGlothlin T, Percy E et al. Task-specific design of skeletal muscle: balancing muscle structural composition. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology 1998;120:35–40.
Linsenmayer TF. Chapter 1. Collagen. In: Hay ED (ed.), Cell Biology of Extracellular Matrix, 2nd edn. Boston, MA: Springer US, 1991, 7–44.
Lobel PS. Spawning sound of the trunkfish, Ostracion meleagris (Ostraciidae). The Biological Bulletin 1996;191:308–9.
Markl H. Schallerzeugung bei Piranhas (Serrasalminae, Characidae). Zeitschrift für. Zeitschrift für Vergleichende Physiologie 1971;74:39–56.
Mecham RP, Heuser JE. The elastic fiber. In: Hay ED (ed.), Cell Biology of Extracellular Matrix, 2nd edn. Boston, MA: Springer US, 1991, 79–109.
Meyer K, Rapport MM. The mucopolysaccharides of the ground substance of connective tissue. Science (New York, N.Y.) 1951;113:596–9.
Millot S, Parmentier E. Development of the ultrastructure of sonic muscles: a kind of neoteny ? BMC Evolutionary Biology 2014;14:24.
Millot S, Vandewalle P, Parmentier E. Sound production in red-bellied piranhas (Pygocentrus nattereri, Kner): an acoustical, behavioural and morphofunctional study. The Journal of Experimental Biology 2011;214:3613–8.
Mok HK, Parmentier E, Chiu KH et al. An intermediate in the evolution of superfast sonic muscles. Frontiers in Zoology 2011;8:31.
Moyer JT. Mating strategies and reproductive behavior of ostraciid fishes at Miyake-jima, Japan. Japanese Journal of Ichthyology 1979;26:148–60.
Moyer JT. Social organization and reproductive behavior of ostraciid fishes from Japan and the Western Atlantic Ocean. Journal of Ethology 1984;2:85–98.
Oliveira TPR, Ladich F, Abed-Navandi D et al. Sounds produced by the longsnout seahorse: a study of their structure and functions. Journal of Zoology 2014;294:114–21.
Parmentier E, Fine ML. Fish sound production: insights. In: Suthers R, Tecumseh F, Popper AN et al. (eds.), Vertebrate Sound Production and Acoustic Communication. Sham: Springer, 2016, 19–49.
Parmentier E, Vandewalle P, Lagardère JP. Sound-producing mechanisms and recordings in Carapini species (Teleostei, Pisces). Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology 2003;189:283–92.
Parmentier E, Vandewalle P, Brié C et al. Comparative study on sound production in different Holocentridae species. Frontiers in Zoology 2011a;8:12.
Parmentier E, Boyle KS, Berten L et al. Sound production and mechanism in Heniochus chrysostomus (Chaetodontidae). The Journal of Experimental Biology 2011b;214:2702–8.
Parmentier E, Tock J, Falguière JC et al. Sound production in Sciaenops ocellatus: preliminary study for the development of acoustic cues in aquaculture. Aquaculture 2014;432:204–11.
Parmentier E, Fine ML, Mok HK. Sound production by a recoiling system in the Pempheridae and Terapontidae. Journal of Morphology 2016;277:717–24.
Parmentier E, Diogo R, Fine ML. Multiple exaptations leading to fish sound production. Fish and Fisheries 2017;18:958–66.
Parmentier E, Solagna L, Bertucci F et al. Simultaneous production of two kinds of sounds in relation with sonic mechanism in the boxfish Ostracion meleagris and O. cubicus. Scientific Reports 2019;9:4962.
Parmentier E, Marucco Fuentes E, Millot M et al. Sound production, hearing sensitivity, and in-depth study of the sound-producing muscles in the cowfish (Lactoria cornuta). Journal of Anatomy 2021;238:956–69.
Parmentier E, Herrel A, Banse M et al. Diving into dual functionality: swim bladder muscles in lionfish for buoyancy and sonic capabilities. Journal of Anatomy 2024;244:249–59.
Rice AN, Bass AH. Novel vocal repertoire and paired swimbladders of the three-spined toadfish, Batrachomoeus trispinosus: insights into the diversity of the Batrachoididae. The Journal of Experimental Biology 2009;212:1377–91.
Rodén L. Structure and metabolism of connective tissue proteoglycans. In: Lennarz WJ (ed.), The Biochemistry of Glycoproteins and Proteoglycans. Boston, MA: Springer US, 1980, 267–371.
Ross R. The elastic fiber. Journal of Histochemistry & Cytochemistry 1973;21:199–208.
De Samber B, Renders J, Elberfeld T et al. FleXCT: a flexible X-ray CT scanner with 10 degrees of freedom. Optics Express 2021;29:3438–57.
Santini F, Sorenson L, Marcroft T et al. A multilocus molecular phylogeny of boxfishes (Aracanidae, Ostraciidae; Tetraodontiformes). Molecular Phylogenetics and Evolution 2013a;66:153–60.
Santini F, Sorenson L, Alfaro ME. A new phylogeny of tetraodontiform fishes (Tetraodontiformes, Acanthomorpha) based on 22 loci. Molecular Phylogenetics and Evolution 2013b;69:177–87.
Sorensen W. Om lydorganer hos fiske. En physiologisk og comparativ-anatomisk undersogelse. University of Copenhagen. Published doctoral thesis, 1884.
Sprague MW, Luczkovich JJ, Pullinger RC et al. Using spectral analysis to identify drumming sounds of some North Carolina fishes in the family Sciaenidae. Journal of the Elisha Mitchell Scientific Society 2000;116:124–45.
Tyler JC. The apparent reduction in number of precaudal vertebrae in trunkfishes (Ostraciontoidae, Plectognathi). Proceedings of the National Academy of Sciences of the United States of America 1963;115:153–90.
Tyler JC. Osteology, phylogeny, and higher classification of the fishes of the order Plectognathi (Tetraodontiformes). (NMFS United States, ed.), 1980.
Van Wassenbergh S, van Manen K, Marcroft TA et al. Boxfish swimming paradox resolved: forces by the flow of water around the body promote manoeuvrability. Journal of The Royal Society Interface 2015;12:20141146.
Winterbottom R. The familial phylogeny of the Tetraodontiformes (Acanthopterygii: Pisces) as evidenced by their comparative myology. Smithsonian Contributions to Zoology 1974;155:1–201.
Winterbottom R, Tyler JC. Phylogenetic relationships of aracanin genera of boxfishes (Ostraciidae: Tetraodontiformes). Copeia 1983;1983:902–17.