[en] Long-noncoding RNA (lncRNA) interact with DNA, RNA and proteins to regulate the epigenome and fundamental biological processes. In the bovine genome, the nature and mechanisms of lncRNA interactions with specific chromatin regions are unexplored yet. Here, we aimed to unravel the chromatin interaction sites of the evolutionary conserved lncRNA TUG1 in the bovine genome using ChIRP-seq (chromatin isolation by RNA precipitation) in two popular bovine cell lines (MDBK, MAC-T) and liver tissue. About half of the genome-wide TUG1 chromatin occupancy in the genome (3225, 3587 and 3,977 interaction sites in MDBK, MAC-T and liver, respectively) was associated with protein-coding genes. Observation of numerous concordant TUG1 chromatin interaction sites between MDBK and MAC-T cells and liver tissue was consistent with the known ubiquitous expression of TUG1. Analysis of overlaps between ChIRP-seq peaks and ATAC-seq peaks in MDBK and MAC-T cells pinpointed TUG1 chromatin interaction sites relevant for modulating chromatin accessibility.
Disciplines :
Genetics & genetic processes
Author, co-author :
Weikard, Rosemarie; Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
Bhushan, Raghu; Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
Becker, Doreen; Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
Hadlich, Frieder; Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
Charlier, Carole ; Université de Liège - ULiège > Département de gestion vétérinaire des Ressources Animales (DRA)
Costa Monteiro Moreira, Gabriel ; Université de Liège - ULiège > Département de gestion vétérinaire des Ressources Animales (DRA)
Kuehn, Christa; Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany, Agricultural and Environmental Faculty, University of Rostock, Rostock, Germany, Friedrich Loeffler Institute, Greifswald-Riems, Germany. Electronic address: christa.kuehn@fli.de
Language :
English
Title :
Elucidating the landscape of genome-wide chromatin interaction sites of the lncRNA TUG1 in bovine cell lines and liver tissue.
H2020 - 815668 - BovReg - BovReg - Identification of functionally active genomic features relevant to phenotypic diversity and plasticity in cattle
Funders :
EU - European Union DFG - German Research Foundation
Funding text :
This study was funded by the German Research Foundation (DFG grant numbers: KU 771/8-1 and WE 1786/5-1 ) and received funding from the European Union Horizon 2020 research and innovation program for the BovReg project (grant number 815668 ).The data generated and analysed in this study are included as figures and tables or included in supplementary tables as indicated appendix A. The liver RNA-seq data used in this study was already used in a previous study (Nolte et al. 2019) stored in the Functional Annotation of Animal Genomes (FAANG) database ( https://data.faang.org/dataset ) under project number PRJEB34570. The ATAC-seq datasets for MDBK and MAC-T cells are available from the FAANG data portal ( https://data.faang.org/home ) under the European Horizon 2020 project BovReg (Grant agreement ID 815668) and deposited under project number PRJEB51163. The ChIRP-seq datasets for MDBK, MAC-T and liver (BioSamples SAMEA119609839, SAMEA119609840, SAMEA119609841) are publicly available at ENA under project number PRJEB 96303.
G. Housman, I. Ulitsky, Methods for distinguishing between protein-coding and long noncoding RNAs and the elusive biological purpose of translation of long noncoding RNAs, Biochim. Biophys. Acta - Gene Regulatory Mechanisms, 1859 (2016) 31-40.
Y. Xiao, Y. Ren, W. Hu, A.R. Paliouras, W. Zhang, L. Zhong, K. Yang, L. Su, P. Wang, L. Y., M. Ma, L. Shi, Long non-coding RNA-encoded micropeptides: functions, mechanisms and implications, Cell Death Discovery, 10 (2024) 450.
A.L. Tornesello, A. Cerasuolo, N. Starita, S. Amiranda, T.P. Cimmino, P. Bonelli, F.M. Tuccillo, F.M. Buonaguro, L. Buonaguro, M.L. Tornesello, Emerging role of endogenous peptides encoded by non-coding RNAs in cancer biology, Noncoding RNA Research, 10 (2024) 231-241.
L. Statello, C.J. Guo, L.L. Chen, M. Huarte, Gene regulation by long non-coding RNAs and its biological functions, Nature Reviews Molecular Cell Biology 22 (2021) 96-118.
J.L. Rinn, H.Y. Chang, Genome regulation by long noncoding RNAs, Annual Review of Biochemistry, 81 (2012) 145-166.
A.E. Kornienko, P.M. Guenzl, D.P. Barlow , F.M. Pauler, Gene regulation by the act of long non-coding RNA transcription, BMC Biology 11 (2013) 59.
P.P. Mattick, P. Carninci, S. Carpenter, H.Y. Chang, L.L. Chen, R. Chen, C. Dean, M.E. Dinger, K.A. Fitzgerald, T.R. Gingeras, M. Guttman, T. Hirose, M. Huarte, R. Johnson, C. Kanduri, P. Kapranov, J.B. Lawrence, L. J.T., J.T. Mendell, T. Mercer, K. Moore, S. Nakagawa, J.L. Rinn, D. Spector, I. Ulitsky, Y. Wan, J.E. Wilusz, M. Wu, Long non-coding RNAs: definitions, functions, challenges and recommendations, Nature Reviews Molecular Cell Biology, 24 (2023) 430-447.
K.C. Wang, H.Y. Chang, Molecular mechanisms of long noncoding RNAs. , Molecular Cell 43 (2011) 904–914
L. Ulitsky, D.P. Bartel, LincRNAs: genomics, evolution, and mechanisms, Cell, 154 (2013) 26-46.
J.W. Kornfeld, J.C. Bruening, Regulation of metabolism by long, non-coding RNAs, Frontiers in Genetics 5(2014) 5.
X.Y. Zhao, J.D. Lin, Long noncoding RNAs: a new regulatory code in metabolic control, Trends Biochemical Sciences 40 (2015) 585-596.
E.K. Robinson, S. Covarrubias, S. Carpenter, The how and why of lncRNA function: An innate immune perspective, Biochimica Biophysica Acta Gene Regulatory Mechanisms 1863 (2020) 194419.
K. Muret, C. Désert, L. Lagoutte, M. Boutin, F. Gondret, T. Zerjal, S. Lagarrigue, Long noncoding RNAs in lipid metabolism: literature review and conservation analysis across species, BMC Genomics, 20 (2019) 882.
A.M. Khalil, M. Guttman, M. Huarte, M. Garber, A. Raj, D. Rivea Morales, K. Thomas, A. Presser, B.E. Bernstein, A. van Oudenaarden, A. Regev, E.S. Lander, J.L. Rinn, Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression, Proceedings of the National Academy of Sciences of the United States of America, 106 (2009) 11667–11672
T. Nojima, N.J. Proudfoot, Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics, Nature Reviews Molecular Cell Biology, 23 (2022) 389–406.
R. Weikard, W. Demasius, C. Kuehn, Mining long noncoding RNA in livestock, Animal Genetics, 48 (2017) 3-18.
B. Kosinska-Selbi, M. Mielczarek, J. Szyda, Review: Long non-coding RNA in livestock, Animal, 14 (2020) 1-11.
S. Lagarrigue, M. Lorthiois, F. Degalez, D. Gilot, T. Derrien, LncRNAs in domesticated animals: from dog to livestock species, Mammalian Genome, 33 (2022) 248-270.
W. Nolte, R. Weikard, R.M. Brunner, E. Albrecht, H.M. Hammon, A. Reverter, C. Kühn, Identification and annotation of potential function of regulatory antisense long non-coding RNAs related to feed efficiency in bos taurus bulls, International Journal of Molecular Sciences, 21 (2020) 3292.
R. Weikard, F. Hadlich, H.M. Hammon, D. Frieten, C. Gerbert, C. Koch, G. Dusel, C. Kuehn, Long noncoding RNAs are associated with metabolic and cellular processes in the jejunum mucosa of pre-weaning calves in response to different diets, Oncotarget, 9 (2018) 21052-21069.
P.A. Alexandre, A. Reverter, R.B. Berezin, L.R. Porto-Neto, G. Ribeiro, M.H.A. Santana, J.B.S. Ferraz, H. Fukumasu, Exploring the Regulatory Potential of Long Non-Coding RNA in Feed Efficiency of Indicine Cattle, Genes, 11 (2020) 22.
X. Yang, ., X. Ma, C. Mei, L. Zan, A genome-wide landscape of mRNAs, lncRNAs, circRNAs and miRNAs during intramuscular adipogenesis in cattle, BMC Genomics, 23 (2022) 691.
T.L. Young, T. Matsuda, C.L. Cepko, The noncoding RNA taurine upregulated gene 1 is required for differentiation of the murine retina, Current Biology, 15 (2005) 501–512.
J.P. Lewandowski, G. Dumbović, A.R. Watson, T. Hwang, E. Jacobs-Palmer, N. Chang, h.C. Muc, K.M. Turner, C. Kirby, N.D. Rubinstein, A.F. Groff, s.S.C. Liapi, C. Gerhardinger, r.A. Beste, P.P. Pandolfi, J.G. Clohessy, H.E. Hoekstra, M. Sauvageau, J.L. Rinn, The Tug1 lncRNA locus is essential for male fertility, Genome Biology, 21 (2020) 237.
H. Zhou, L. Sun, F. Wan, Molecular mechanisms of TUG1 in the proliferation, apoptosis, migration and invasion of cancer cells, Oncology Letters, 18 (2019) 4393-4402.
J. Long, S.S. Badal, Z. Ye, Y. Wang, B.A. Ayanga, D.L. Galvan, N.H. Green, B.H. Chang, P.A. Overbeek, F.R. Danesh, Long noncoding RNA Tug1 regulates mitochondrial bioenergetics in diabetic nephropathy, Journal of Clinical Investigation, 126 (2016) 4205-4218.
J. Long, D.L. Galvan, K. Mise, Y.S. Kanwar, L. Li, N. Poungavrin, P.A. Overbeek, B.H. Chang, F.R. Danesh, Role for carbohydrate response element-binding protein (ChREBP) in high glucose-mediated repression of long noncoding RNA Tug1, Journal Biological Chemistry, 295 (2020) 15840-15852.
Y. Zhang, Y. Ma, M. Gu, Y. Peng, lncRNA TUG1 promotes the brown remodeling of white adipose tissue by regulating miR 204 targeted SIRT1 in diabetic mice, International Journal Molecular Medicine, 46 (2020) 2225-2234,.
C. Chu, K. Qu, F.L. Zhong, S.E. Artandi, H.Y. Chang, Genomic Maps of Long Noncoding RNA Occupancy Reveal Principles of RNA-Chromatin Interactions, Molecular Cell, 44 (2011) 667-678.
C. Chu, Q.C. Zhang, S.T. da Rocha, R.A. Flynn, M. Bharadwaj, J.M. Calabrese, T. Magnuson, E. Heard, H.Y. Chang, Systematic discovery of Xist RNA binding proteins, Cell, 161 (2015) 404-416.
H.T. Huynh, G. Robitaille, J.D. Turner, Establishment of bovine mammary epithelial cells (MAC-T): an in vitro model for bovine lactation, Experimental Cell Research, 197 (1991) 191-199.
W. Nolte, R. Weikard, R.M. Brunner, E. Albrecht, H.M. Hammon, A. Reverter, C. Kuehn, Biological Network Approach for the Identification of Regulatory Long Non-Coding RNAs Associated With Metabolic Efficiency in Cattle, Frontiers in Genetics, 10 (2019) 19.
S. Heinz, C. Benner, N. Spann, E. Bertolino, Y.C. Lin, P. Laslo, J.X. Cheng, C. Murre, H. Singh, C.K. Glass, Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities, Molecular Cell 38 (2010) 576-589.
D.W. Huang, B.T. Sherman, R.A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources, Nature Protocols 4(2009) 44-57.
C. Yuan, L. Tang, T. Lopdell, V.A. Petrov, C. Oget-Ebrad, G.C.M. Moreira, J.L. Gualdrón Duarte, A. Sartelet, Z. Cheng, M. Salavati, D.C. Wathes, M.A. Crowe, GplusE Consortium, W. Coppieters, M. Littlejohn, C. Charlier, T. Druet, M. Georges, H. Takeda, An organism-wide ATAC-seq peak catalog for the bovine and its use to identify regulatory variants, Genome Research, 33 (2023) 1848.
A. Kommadath, H. Nie, M.A. Groenen, M.F. te Pas, R.F. Veerkamp, M.A. Smits, Regional regulation of transcription in the bovine genome. , PLoS One, 6 (2011) e20413.
D. Li, Structure and Function of the Glycosylphosphatidylinositol Transamidase, a Transmembrane Complex Catalyzing GPI Anchoring of Proteins, Subcellular Biochemistry, 104 (2024) 425-458.
A. Clauss, M. Persson, H. Lilja, Å. Lundwall, Three genes expressing Kunitz domains in the epididymis are related to genes of WFDC-type protease inhibitors and semen coagulum proteins in spite of lacking similarity between their protein products, BMC Biochemistry 11 (2011) 1255.
M. Baba, S.B. Hong, N. Sharma, M.B. Warren, N. M.L, A. Iwamatsu, D. Esposito, W.K. Gillette, R.F.r. Hopkins, J.L. Hartley, M. Furihata, S. Oishi, W. Zhen, T.R.J. Burke, W.M. Linehan, L.S. Schmidt, B. Zbar, Folliculin encoded by the BHD gene interacts with a binding protein, FNIP1, and AMPK, and is involved in AMPK and mTOR signaling, Proceedings of the National Academy of Sciences of the U S A., 103 (2006) 15552-15557.
B. Novy, A. Dagunts, T. Weishaar, E.E. Holland, H. Adoff, E. Hutchinson, M. De Maria, M. Kampmann, N.G. Tsvetanova, B.T. Lobingier, An engineered trafficking biosensor reveals a role for DNAJC13 in DOR downregulation, Nature Chemical Biology, 21 (2025) 360-370.
S. Frey-Jakobs, J.M. Hartberger, M. Fliegauf, C. Bossen, M.L. Wehmeyer, J.C. Neubauer, A. Bulashevska, M. Proiett, P. Fröbel, C. Nöltner, L. Yang, J. Rojas-Restrepo, N. Langer, S. Winzer, K.R. Engelhardt, C. Glocker, D. Pfeifer, A. Klein, A.A. Schäffer, I. Lagovsky, I. Lachover-Roth, V. Béziat, A. Puel, J.L. Casanova, B. Fleckenstein, S. Weidinger, S.S. Kilic, B.Z. Garty, A. Etzioni, B. Grimbacher, ZNF341 controls STAT3 expression and thereby immunocompetence, Science Immunology 3(2018).
A. Oguro-Ando, R.A. Bamford, W. Sital, J.J. Sprengers, A. Zuko, J.M. Matser, H. Oppelaar, A. Sarabdjitsingh, M. Joëls, J.P.H. Burbach, M.J. Kas, Cntn4, a risk gene for neuropsychiatric disorders, modulates hippocampal synaptic plasticity and behavior, Translational Psychiatry, 11 (2021) 106.
A. Joshi, M. Shaikh, S. Singh, A. Rajendran, A. Mhetre, S.S. Kamat, Biochemical characterization of the PHARC-associated serine hydrolase ABHD12 reveals its preference for very-long-chain lipids, Journal Biological Chemistry, 293 (2018) 16953-16963.
A. Ravussin, A. Brech, S.A. Tooze, H. Stenmark, The phosphatidylinositol 3-phosphate-binding protein SNX4 controls ATG9A recycling and autophagy, Journal Cell Science 134 (2021) jcs250670.
L. Planas-Serra, N. Launay, L. Goicoechea, B. Heron, C. Jou, N. Juliá-Palacios, M. Ruiz, S. Fourcade, C. Casasnovas, C. De La Torre, A. Gelot, M. Marsal, P. Loza-Alvarez, À. García-Cazorla, A. Fatemi, I. Ferrer, M. Portero-Otin, E. Area-Gómez, A. Pujol, Sphingolipid desaturase DEGS1 is essential for mitochondria-associated membrane integrity, Journal of Clinical Investigation, 133 (2023) e162957.
A.J. Trewin, J. Silver, H.T. Dillon, P.A. Della Gatta, L. Parker, D.S. Hiam, Y.P. Lee, M. Richardson, G.D. Wadley, S. Lamon, Long non-coding RNA Tug1 modulates mitochondrial and myogenic responses to exercise in skeletal muscle, BMC Biology, 20 (2022) 164.
F. Qi, Z.D. Lv, W.D. Huang, S.C. Wei, X.M. Liu, W.D. Song, LncRNA TUG1 promotes pulmonary fibrosis progression via up-regulating CDC27 and activating PI3K/Akt/mTOR pathway, Epigenetics, 18 (2023) 2195305.
Y. Long, X. Wang, D.T. Youmans, T.R. Cech, How do lncRNAs regulate transcription?, Science Advances, 3 (2017) eaao2110.
G. Zhang, Y. Lan, A. Xie, J. Shi, H. Zhao, I. Xu, S. Zhu, T. Luo, T. Zhao, Y. Xiao, X. Li, Comprehensive analysis of long noncoding RNA (lncRNA)-chromatin interactions reveals lncRNA functions dependent on binding diverse regulatory elements, Journal Biological Chemistry 294 (2019) 15613-15622.